首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5121篇
  免费   144篇
  国内免费   61篇
安全科学   280篇
废物处理   171篇
环保管理   1301篇
综合类   552篇
基础理论   1433篇
环境理论   9篇
污染及防治   1019篇
评价与监测   328篇
社会与环境   176篇
灾害及防治   57篇
  2023年   57篇
  2022年   58篇
  2021年   57篇
  2020年   64篇
  2019年   70篇
  2018年   125篇
  2017年   136篇
  2016年   181篇
  2015年   127篇
  2014年   161篇
  2013年   420篇
  2012年   234篇
  2011年   309篇
  2010年   212篇
  2009年   247篇
  2008年   267篇
  2007年   266篇
  2006年   234篇
  2005年   206篇
  2004年   187篇
  2003年   152篇
  2002年   146篇
  2001年   92篇
  2000年   97篇
  1999年   71篇
  1998年   79篇
  1997年   62篇
  1996年   70篇
  1995年   81篇
  1994年   77篇
  1993年   69篇
  1992年   63篇
  1991年   44篇
  1990年   39篇
  1989年   39篇
  1988年   30篇
  1987年   43篇
  1986年   43篇
  1985年   41篇
  1984年   46篇
  1983年   49篇
  1982年   57篇
  1981年   47篇
  1980年   37篇
  1979年   16篇
  1978年   31篇
  1977年   16篇
  1976年   15篇
  1972年   9篇
  1971年   9篇
排序方式: 共有5326条查询结果,搜索用时 890 毫秒
981.
Modelling the Effects of Inflow Parameters on Lake Water Quality   总被引:1,自引:0,他引:1  
A one-dimensional lake water quality model which includes water temperature, phytoplankton, phosphorus as phosphate, nitrogen as ammonia, nitrogen as nitrate and dissolved oxygen concentrations, previously calibrated for Lake Calhoun (USA) is applied to Uokiri Lake (Japan) for the year 1994. The model simulated phytoplankton and nutrient concentrations in the lake from July to November. Most of the water quality parameters are found to be the same as for Lake Calhoun. To predict probable lake water quality deterioration from algal blooming due to increased nutrient influx from river inflow, the model was run for several inflow water conditions. Effects of inflow nutrient concentration, inflow volume, inflow water temperatures are presented separately. The effect of each factor is considered in isolation although in reality more than one factor can change simultaneously. From the results it is clear that inflow nutrient concentration, inflow volume and inflow water temperature show very regular and reasonable impacts on lake water quality.  相似文献   
982.
Community-level resource management efforts are cornerstones in ensuring sustainable use of natural resources. Yet, understanding how community characteristics influence management practices remains contested. With a sample size of ≥725 communities, we assessed the effects of key community (i.e., socioeconomic) characteristics (human population size and density, market integration, and modernization) on the probability of occurrence of fisheries management practices, including gear, species, and spatial restrictions. The study was based in Solomon Islands, a Pacific Island country with a population that is highly dependent on coastal fisheries. People primarily dwell in small communities adjacent to the coastline dispersed across 6 island provinces and numerous smaller islands. We used nationally collected data in binomial logistic regression models to examine the likelihood of management occurrence, given socioeconomic context of communities. In contrast to prevailing views, we identified a positive and statistically significant association between both human population size and market integration and all 3 management practices. Human population density, however, had a statistically significant negative association and modernization a varied and limited association with occurrence of all management practices. Our method offers a way to remotely predict the occurrence of resource management practices based on key socioeconomic characteristics. It could be used to improve understanding of why some communities conduct natural resource management activities when statistical patterns suggest they are not likely to and thus improve understanding of how some communities of people beat the odds despite limited market access and high population density.  相似文献   
983.
The pink pigeon (Nesoenas mayeri) is an endemic species of Mauritius that has made a remarkable recovery after a severe population bottleneck in the 1970s to early 1990s. Prior to this bottleneck, an ex situ population was established from which captive-bred individuals were released into free-living subpopulations to increase population size and genetic variation. This conservation rescue led to rapid population recovery to 400–480 individuals, and the species was twice downlisted on the International Union for the Conservation of Nature (IUCN) Red List. We analyzed the impacts of the bottleneck and genetic rescue on neutral genetic variation during and after population recovery (1993–2008) with restriction site-associated sequencing, microsatellite analyses, and quantitative genetic analysis of studbook data of 1112 birds from zoos in Europe and the United States. We used computer simulations to study the predicted changes in genetic variation and population viability from the past into the future. Genetic variation declined rapidly, despite the population rebound, and the effective population size was approximately an order of magnitude smaller than census size. The species carried a high genetic load of circa 15 lethal equivalents for longevity. Our computer simulations predicted continued inbreeding will likely result in increased expression of deleterious mutations (i.e., a high realized load) and severe inbreeding depression. Without continued conservation actions, it is likely that the pink pigeon will go extinct in the wild within 100 years. Conservation rescue of the pink pigeon has been instrumental in the recovery of the free-living population. However, further genetic rescue with captive-bred birds from zoos is required to recover lost variation, reduce expression of harmful deleterious variation, and prevent extinction. The use of genomics and modeling data can inform IUCN assessments of the viability and extinction risk of species, and it helps in assessments of the conservation dependency of populations.  相似文献   
984.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   
985.
Environmental Chemistry Letters - Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol is one of the simplest molecules for...  相似文献   
986.
Pike DA  Pizzatto L  Pike BA  Shine R 《Ecology》2008,89(3):607-611
Survival rates of juvenile reptiles are critical population parameters but are difficult to obtain through mark-recapture programs because these small, secretive animals are rarely caught. This scarcity has encouraged speculation that survival rates of juveniles are very low, and we test this prediction by estimating juvenile survival rates indirectly. A simple mathematical model calculates the annual juvenile survival rate needed to maintain a stable population size, using published data on adult survival rates, reproductive output, and ages at maturity in 109 reptile populations encompassing 57 species. Counter to prediction, estimated juvenile survival rates were relatively high (on average, only about 13% less than those of conspecific adults) and highly correlated with adult survival rates. Overall, survival rates during both juvenile and adult life were higher in turtles than in snakes, and higher in snakes than in lizards. As predicted from life history theory, rates of juvenile survival were higher in species that produce large offspring, and higher in viviparous squamates than in oviparous species. Our analyses challenge the widely held belief that juvenile reptiles have low rates of annual survival and suggest instead that sampling problems and the elusive biology of juvenile reptiles have misled researchers in this respect.  相似文献   
987.
Phenology: response, driver, and integrator.   总被引:1,自引:0,他引:1  
  相似文献   
988.
Inouye DW 《Ecology》2008,89(2):353-362
The timing of life history traits is central to lifetime fitness and nowhere is this more evident or well studied as in the phenology of flowering in governing plant reproductive success. Recent changes in the timing of environmental events attributable to climate change, such as the date of snowmelt at high altitudes, which initiates the growing season, have had important repercussions for some common perennial herbaceous wildflower species. The phenology of flowering at the Rocky Mountain Biological Laboratory (Colorado, USA) is strongly influenced by date of snowmelt, which makes this site ideal for examining phenological responses to climate change. Flower buds of Delphinium barbeyi, Erigeron speciosus, and Helianthella quinquenervis are sensitive to frost, and the earlier beginning of the growing season in recent years has exposed them to more frequent mid-June frost kills. From 1992 to 1998, on average 36.1% of Helianthella buds were frosted, but for 1999-2006 the mean is 73.9%; in only one year since 1998 have plants escaped all frost damage. For all three of these perennial species, there is a significant relationship between the date of snowmelt and the abundance of flowering that summer. Greater snowpack results in later snowmelt, later beginning of the growing season, and less frost mortality of buds. Microhabitat differences in snow accumulation, snowmelt patterns, and cold air drainage during frost events can be significant; an elevation difference of only 12 m between two plots resulted in a temperature difference of almost 2 degrees C in 2006 and a difference of 37% in frost damage to buds. The loss of flowers and therefore seeds can reduce recruitment in these plant populations, and affect pollinators, herbivores, and seed predators that previously relied on them. Other plant species in this environment are similarly susceptible to frost damage so the negative effects for recruitment and for consumers dependent on flowers and seeds could be widespread. These findings point out the paradox of increased frost damage in the face of global warming, provide important insights into the adaptive significance of phenology, and have general implications for flowering plants throughout the region and anywhere climate change is having similar impacts.  相似文献   
989.
Experimental studies demonstrating that nitrogen (N) enrichment reduces plant diversity within individual plots have led to the conclusion that anthropogenic N enrichment is a threat to global biodiversity. These conclusions overlook the influence of spatial scale, however, as N enrichment may alter beta diversity (i.e., how similar plots are in their species composition), which would likely alter the degree to which N-induced changes in diversity within localities translate to changes in diversity at larger scales that are relevant to policy and management. Currently, it is unclear how N enrichment affects biodiversity at scales larger than a small plot. We synthesized data from 18 N-enrichment experiments across North America to examine the effects of N enrichment on plant species diversity at three spatial scales: small (within plots), intermediate (among plots), and large (within and among plots). We found that N enrichment reduced plant diversity within plots by an average of 25% (ranging from a reduction of 61% to an increase of 5%) and frequently enhanced beta diversity. The extent to which N enrichment altered beta diversity, however, varied substantially among sites (from a 22% increase to an 18% reduction) and was contingent on site productivity. Specifically, N enrichment enhanced beta diversity at low-productivity sites but reduced beta diversity at high-productivity sites. N-induced changes in beta diversity generally reduced the extent of species loss at larger scales to an average of 22% (ranging from a reduction of 54% to an increase of 18%). Our results demonstrate that N enrichment often reduces biodiversity at both local and regional scales, but that a focus on the effects of N enrichment on biodiversity at small spatial scales may often overestimate (and sometimes underestimate) declines in regional biodiversity by failing to recognize the effects of N on beta diversity.  相似文献   
990.
Post DM  Palkovacs EP  Schielke EG  Dodson SI 《Ecology》2008,89(7):2019-2032
Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号