首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   11篇
  国内免费   9篇
安全科学   21篇
废物处理   13篇
环保管理   137篇
综合类   50篇
基础理论   98篇
污染及防治   136篇
评价与监测   46篇
社会与环境   21篇
灾害及防治   11篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   20篇
  2013年   65篇
  2012年   20篇
  2011年   22篇
  2010年   20篇
  2009年   18篇
  2008年   21篇
  2007年   28篇
  2006年   24篇
  2005年   20篇
  2004年   13篇
  2003年   19篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   13篇
  1993年   9篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   9篇
  1982年   9篇
  1981年   8篇
  1980年   11篇
  1979年   9篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
431.
Cumulative impact assessment (CIA) is the process of systematically assessing a proposed action's cumulative environmental effects in the context of past, present, and future actions, regardless of who undertakes such actions. Previous studies have examined CIA efforts at the federal level but little is known about how states assess the cumulative impacts of nonfederal projects. By examining state environmental review statutes, administrative rules, agency-prepared materials, and a national survey of the administrators of state environmental review programs, this study identifies the legal and administrative frameworks for CIA. It examines current CIA practice, discusses the relationship between CIA policy and its implementation, and explores the opportunities for improvement. The results of the study show that twenty-nine state environmental review programs across twenty-six states required the assessment of cumulative environmental impacts. More than half of these programs have adopted specific procedures for implementing their policies. Some programs assessed cumulative impacts using a standard review document, and others have created their own documentations incorporated into applications for state permits or funding. The majority of programs have adopted various scales, baselines, significance criteria, and coordination practices in their CIA processes. Mixed methods were generally used for data collection and analysis; qualitative methods were more prevalent than quantitative methods. The results also suggest that a program with comprehensive and consistent environmental review policies and procedures does not always imply extensive CIA requirements and practices. Finally, this study discusses the potential for improving existing CIA processes and promoting CIA efforts in states without established environmental review programs.  相似文献   
432.
A combination field and laboratorystudy was conducted to evaluate the ability of arecently developed bioindicator to detect detrimentalnutrient conditions in streams. The method utilizesbacterial growth on aquatic insects to determinenutrient impacts. Field investigations indicated thatelevated concentrations of nitrate and phosphate wereassociated with growth of filamentous bacteria oninsect body surfaces, and that there was a significantreduction in the density of major insect taxa in thenutrient-enriched stream reaches. Laboratoryinvestigations confirmed a strong linkage betweenbacterial growth and reduced survival of insects. Survival was examined for insects with bacterialinfestation ranging from 0% to greater than 50%coverage of the body surface. A threshold forcatastrophic mortality occurred at about 25% bodycoverage; there were few survivors above that amount. Based on these findings, the diagnostic endpoint forthe bioindicator is 25% body coverage by bacterialgrowth, a level that signifies major impacts and isalso easy to detect visually. This study providesadditional evidence that the insect-bacteriabioindicator is a reliable tool for assessing nutrientimpacts on stream macroinvertebrate communities. Thebioindicator should prove useful for identifyingnutrient-impacted sites as well as monitoring thesuccess of management actions to improve water quality.  相似文献   
433.
Abstract: A tool for providing the linkage between air and water‐quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint‐source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8‐digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user‐supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle‐Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities.  相似文献   
434.
The ventilation and pollutant transport in a two-dimensional (2D) street canyon of building-height-to-street-width (aspect) ratio h/b = 1 under different unstable stratifications were examined. To characterize the combined wind-buoyancy-driven flow and pollutant transport at different Richardson number Ri, a computational fluid dynamics (CFD) model based on the Reynolds-averaged Navier–Stokes (RANS) equations with the Renormalization Group (RNG) k ? ε turbulence model was adopted. Unlike the isothermal condition, a secondary recirculation is initiated at the ground-level windward corner of the street canyon once the unstable stratification is switched on (Ri < 0). It traps the ground-level pollutant leading to elevated pollutant concentration there. As Ri further decreases, the enlarging secondary recirculation enables direct pollutant removal from its core to the shear layer that offsets the ground-level pollutant accumulation. The ventilation and pollutant removal performance under different unstable stratifications are compared by the air (ACH) and pollutant (PCH) exchange rates, and pollutant retention time (τ). Both the mean and turbulent components of ACH are found to increase with decreasing Ri, suggesting that unstable stratification promotes ventilation in street canyons. Moreover, the CFD results agree well with our theoretical model that ACH2 varies linearly with Ri. Turbulent transport originally dominates the pollutant removal under isothermal condition. However, progressive domination of pollutant removal by mean wind can be observed with decreasing stability (decreasing Ri from 0 to ?10.6). The critical value is estimated to be Ri = ?8, below which mean wind is the major pollutant removal carrier. Reduction in τ is also observed with decreasing Ri. Hence, in unstable stratification, pollutant resides shorter time in the street canyon compared with its isothermal counterpart, and the ventilation and pollutant removal are more favorable.  相似文献   
435.
Watershed land use effects on lake water quality in Denmark   总被引:5,自引:0,他引:5  
Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality.  相似文献   
436.
This special issue of Disasters on humanitarian governance focuses on risk and order. Its contributions show the tensions between humanitarian normative ideals and practical consequences, as many of the ordering effects are associated with either intended or unintended consequences. This introduction offers a conceptual framing of humanitarian governance. Defining humanitarian governance as a subset of global governance, the paper shows how humanitarians have attempted to improve the consequences of their work by fighting instrumentalisation and instituting rationalisation processes. It adapts four questions, originally formulated by Michael Barnett ( 2013 ), to examine the ways in which humanitarian governance functions in more detail: what kind of world is being imagined and produced through the specific concern with order and risk? Who governs? How is this a form of humanitarian governance and how is it organised? And finally, what are the principal techniques of such governance? The conclusion summarises the main findings and sets an agenda for further research.  相似文献   
437.
438.
This study is part of the Global Mercury Observation System (GMOS), a European FP7 project dedicated to the improvement and validation of mercury models to assist in establishing a global monitoring network and to support political decisions. One key question about the global mercury cycle is the efficiency of its removal out of the atmosphere into other environmental compartments. So far, the evaluation of modeled wet deposition of mercury was difficult because of a lack of long-term measurements of oxidized and elemental mercury. The oxidized mercury species gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) which are found in the atmosphere in typical concentrations of a few to a few tens pg/m3 are the relevant components for the wet deposition of mercury. In this study, the first European long-term dataset of speciated mercury taken at Waldhof/Germany was used to evaluate deposition fields modeled with the chemistry transport model (CTM) Community Multiscale Air Quality (CMAQ) and to analyze the influence of the governing parameters. The influence of the parameters precipitation and atmospheric concentration was evaluated using different input datasets for a variety of CMAQ simulations for the year 2009. It was found that on the basis of daily and weekly measurement data, the bias of modeled depositions could be explained by the bias of precipitation fields and atmospheric concentrations of GOM and PBM. A correction of the modeled wet deposition using observed daily precipitation increased the correlation, on average, from 0.17 to 0.78. An additional correction based on the daily average GOM and PBM concentration lead to a 50 % decrease of the model error for all CMAQ scenarios. Monthly deposition measurements were found to have a too low temporal resolution to adequately analyze model deficiencies in wet deposition processes due to the nonlinear nature of the scavenging process. Moreover, the general overestimation of atmospheric GOM by the CTM in combination with an underestimation of low precipitation events in the meteorological models lead to a good agreement of total annual wet deposition besides the large error in weekly deposition estimates. Moreover, it was found that the current speciation profiles for GOM emissions are the main factor for the overestimation of atmospheric GOM concentrations and might need to be revised in the future. The assumption of zero emissions of GOM lead to an improvement of the mean normalized bias for three-hourly observations of atmospheric GOM from 9.7 to 0.5, Furthermore, the diurnal correlation between model and observation increased from 0.01 to 0.64. This is a strong indicator that GOM is not directly emitted from primary sources but is mainly created by oxidation of GEM.  相似文献   
439.
Citizen scientists are increasingly engaged in gathering biodiversity information, but trade‐offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011–2014) of a short‐duration citizen science project (Big Butterfly Count [BBC]) with those from long‐running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3‐week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3‐week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short‐duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species’ flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass‐participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass‐participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land‐use types), as well as serving to reconnect an increasingly urban human population with nature.  相似文献   
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号