首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   11篇
  国内免费   9篇
安全科学   21篇
废物处理   13篇
环保管理   137篇
综合类   50篇
基础理论   92篇
污染及防治   130篇
评价与监测   46篇
社会与环境   21篇
灾害及防治   11篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   15篇
  2013年   65篇
  2012年   20篇
  2011年   22篇
  2010年   20篇
  2009年   17篇
  2008年   21篇
  2007年   27篇
  2006年   24篇
  2005年   20篇
  2004年   13篇
  2003年   19篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   12篇
  1993年   9篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   9篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   8篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有521条查询结果,搜索用时 46 毫秒
61.
Powders of chromite ore processing residue (COPR) were mineralogically evaluated using quantitative X-ray powder diffraction (XRPD) to illustrate the impacts of sample preparation procedures. Chromite ore processing residue is strongly alkaline, reactive, contains minerals of varying hardness and absorption coefficients, and exhibits significant amorphicity. This poses a challenge to produce powders for XRPD analysis that are sufficiently fine and of uniform particle size while avoiding mineral reactions and overgrinding effects. Dry, hand pulverization to different grain sizes, and wet, mechanical pulverization (micromilling) using four milling liquids (cyclohexane, isopropanol, ethanol, and water), and variable milling durations (up to 15 min) were evaluated. Micromilling with a light, nonpolar, highly evaporative liquid such as cyclohexane with a milling time of 5 min mitigated systematic errors such as microabsorption and preferred orientation as it produced finer and more uniform particle size distributions than the hand-pulverized powders, while simultaneously affording the least time for sample preparation. Conversely, the use of water as milling liquid resulted in extensive hydration reactions during sample preparation, causing mischaracterization and significant underestimation of its reactive brownmillerite content, which can complicate the remediation design process for COPR. Hand pulverization emerged as a necessary complement to quantify Cr(VI)-containing, softer minerals destroyed during mechanical milling, the quantification of which has also important implications for COPR treatment design. The findings of this study may be applicable in a variety of geochemically complicated and reactive environmental media (metal-contaminated soils, stabilized/solidified media, inorganic waste), and points to the importance of the sample preparation method to obtain reliable quantitative XRPD results.  相似文献   
62.
Particulate/gas separation techniques have been the subject of much research in recent years. From this research have come new concepts and methods, such as the use of acoustics, high gradient magnetic fields, and electrostatic filtration in particulate/gas separation. Some of the results of the work in the field were discussed by scientists in a workshop held at the University of Notre Dame in April 1977. The highlights of the discussions at that workshop are presented here.  相似文献   
63.
Conservative models were used to estimate the airborne concentrations of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) vapor and particulates originating from soil containing 100 ppb TCDD. The upper-bound estimates were 3.25 pg/m3 of airborne TCDD vapor on-site and 0.51 pg/m3 for TCDD vapor 100 meters downwind. The TCDD air concentration on-site due to suspended particulate is estimated to be 1.4 pg/m3, based on a TSP level of 0.07 mg/m3. Assuming 70 years of continuous exposure to these concentrations, the upper-bound cancer risks determined from the Jury model were estimated to be 9.4 × 10−6 to 1.1 × 10−4 and 1.5 × 10−6 to 1.7 × 10−5 for inhalation of on- and off-site vapor, respectively, and 4.1 × 10−6 to 4.6 × 10−5 for dust inhalation. Since few sites have average soil concentrations as high as 100 ppb TCDD, this worst-case analysis indicates that inhalation will rarely, if ever, be a significant route of exposure to TCDD-contaminated soil. Experimental results support this claim and point to much lower risk estimates (8.4 × 10−9 to 9.9 × 10−8), suggesting that the parameters used in the Jury model are likely to overestimate the actual airborne levels of TCDD at contaminated sites.  相似文献   
64.
65.
ABSTRACT A record snowfall of 55.8 centimeters occurred on December 1 and 2, 1974 in Portage County, Ohio. An early winter thaw melted the greater part of the snow by December 22, 1974, and a two-day rain fell from December 23 to December 25. These weather events provided an opportunity to compare snowmelt and rainfall contribution to runoff and phosphorus loading to the Twin Lakes Watershed. Phosphorus concentrations of the snow and rain were determined. Six lake inflows and two lake outflows were measured daily for volume and phosphorus concentration. The snow added 217,000 cubic meters of water and 2.2 kilograms of total phosphorus to the watershed. The rain added 74,000 cubic meters of water and 1.6 kilograms of total phosphorus. Total water discharge from the watershed during December was 244,537 cubic meters and total phosphorus output was 20.3 kilograms. The snow provided 49.9% of the discharge and 8% of the phosphorus whereas the rainfall contributed 28% of the discharge and 6% of the phosphorus. These results indicate that while snow is a significant source of water, it is not a large source of phosphorus. The greatest contribution of phosphorus comes from fine sediment carried by storm runoff.  相似文献   
66.
67.
This paper discusses the implosion of a large inner-city hospital in Calgary, Alberta, Canada, on October 4, 1998. Stationary and mobile air monitoring conducted after the implosion indicated there were several short-term air quality issues, including significant temporal increases in total suspended particles, particulate matter (PM) with aerodynamic diameter less than or equal to 10 microm (PM10), PM with aerodynamic diameter less than or equal to 2.5 microm (PM2.5), asbestos, and airborne and settled lead. In addition, the implosion created a dust cloud that traveled much further than expected, out to 20 km. The ability of an implosion to effectively aerosolize building materials requires the removal of all friable and nonfriable forms of asbestos and all Pb-containing painted surfaces during pre-implosion preparatory work. Public advisories to mitigate personal exposure and indoor migration of the implosion dust cloud constituents should extend to 10 or 20 km around an implosion site. These findings point to a number of complex and problematic issues regarding implosions and safeguarding human health and suggest that implosions in metropolitan areas should be prohibited. Further work to characterize the public health risks of conventional versus implosion demolition is recommended.  相似文献   
68.
Heisey DM  Joly DO  Messier F 《Ecology》2006,87(9):2356-2365
Researchers and wildlife managers increasingly find themselves in situations where they must deal with infectious wildlife diseases such as chronic wasting disease, brucellosis, tuberculosis, and West Nile virus. Managers are often charged with designing and implementing control strategies, and researchers often seek to determine factors that influence and control the disease process. All of these activities require the ability to measure some indication of a disease's foothold in a population and evaluate factors affecting that foothold. The most common type of data available to managers and researchers is apparent prevalence data. Apparent disease prevalence, the proportion of animals in a sample that are positive for the disease, might seem like a natural measure of disease's foothold, but several properties, in particular, its dependency on age structure and the biasing effects of disease-associated mortality, make it less than ideal. In quantitative epidemiology, the "force of infection," or infection hazard, is generally the preferred parameter for measuring a disease's foothold, and it can be viewed as the most appropriate way to "adjust" apparent prevalence for age structure. The typical ecology curriculum includes little exposure to quantitative epidemiological concepts such as cumulative incidence, apparent prevalence, and the force of infection. The goal of this paper is to present these basic epidemiological concepts and resulting models in an ecological context and to illustrate how they can be applied to understand and address basic epidemiological questions. We demonstrate a practical approach to solving the heretofore intractable problem of fitting general force-of-infection models to wildlife prevalence data using a generalized regression approach. We apply the procedures to Mycobacterium bovis (bovine tuberculosis) prevalence in bison (Bison bison) in Wood Buffalo National Park, Canada, and demonstrate strong age dependency in the force of infection as well as an increased mortality hazard in positive animals.  相似文献   
69.
70.
We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号