首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   11篇
  国内免费   9篇
安全科学   21篇
废物处理   13篇
环保管理   138篇
综合类   59篇
基础理论   94篇
污染及防治   134篇
评价与监测   46篇
社会与环境   21篇
灾害及防治   11篇
  2023年   2篇
  2021年   6篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   8篇
  2015年   14篇
  2014年   15篇
  2013年   65篇
  2012年   20篇
  2011年   22篇
  2010年   20篇
  2009年   17篇
  2008年   21篇
  2007年   28篇
  2006年   26篇
  2005年   22篇
  2004年   13篇
  2003年   19篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   13篇
  1993年   9篇
  1992年   7篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   9篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   8篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1967年   3篇
排序方式: 共有537条查询结果,搜索用时 46 毫秒
41.
Jobos Bay, located on the southeastern coast of Puerto Rico, contains a variety of habitats including mangroves, seagrass meadows, and coral reefs. The watershed surrounding the bay includes a number of towns, agricultural areas, and the Jobos Bay National Estuarine Research Reserve (NERR). Jobos Bay and the surrounding watershed are part of a Conservation Effects Assessment Project (CEAP), involving the Jobos Bay NERR, the US Department of Agriculture, and the National Oceanic and Atmospheric Administration (NOAA) to assess the benefits of agricultural best management practices (BMPs) on the terrestrial and marine environments. As part of the Jobos Bay CEAP, NOAA collected sediment samples in May 2008 to characterize over 130 organic chemical contaminants. This paper presents the results of the organic contaminant analysis. The organic contaminants detected in the sediments included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and the pesticide DDT. PAHs at one site in the inner bay near a boat yard were significantly elevated; however, all organic contaminant classes measured were below NOAA sediment quality guidelines that would have indicated that impacts were likely. The results of this work provide an important baseline assessment of the marine environment that will assist in understanding the benefits of implementing BMPs on water quality in Jobos Bay.  相似文献   
42.
In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research and Forecasting (simulated). The SWAT model was applied to two 10-digit hydrologic unit code watersheds in the Coastal Plain and Piedmont zones of North Carolina. Nitrogen cycling and loading response to these meteorological data were investigated by exploring 19 SWAT nitrogen outputs relating to landscape delivery, biogeochemical assimilation, and atmospheric deposition. The largest difference in model output using both meteorology data sets was for large loads/fluxes. Landscape delivery outputs (e.g., NO? 3 watershed discharge, groundwater NO? 3 flux, soil NO? 3 percolation) showed the largest difference across all values. Use of the two weather data sources resulted in a nearly twofold difference in NO? 3 watershed discharge and groundwater NO? 3 flux. Differences for many nitrogen outputs were greater than those for sub-basin flow. Nitrogen outputs showed the greatest difference for agricultural land covers and there was no flow-related pattern in output differences across sub-basins or over time (years). In general, nitrogen parameter models that had a greater number of nitrate concentration, flow, and temperature terms (equation variables) in each transport model showed the greatest difference between both meteorology applications.  相似文献   
43.
There has been extensive analysis of Clean Air Act Amendment (CAAA) regulation impacts to changes in atmospheric nitrogen deposition; however, few studies have focused on watershed nitrogen transfer particularly regarding long-term predictions. In this study, we investigated impacts of CAAA NOx emissions on the fate and transport of nitrogen for two watersheds in the Neuse River Basin. We applied the Soil and Water Assessment Tool (SWAT) using simulated deposition rates from the Community Multiscale Air Quality (CMAQ) model. Two scenarios were investigated: one that considered CAAA emission controls in CMAQ simulation (with) and a second that did not (without). By 2020, results showed a 70 % drop in nitrogen discharge for the Little River watershed and a 50 % drop for the Nahunta watershed from 1990 levels under the with-CAAA scenario. Denitrification and plant nitrogen uptake played important roles in nitrogen discharge from each watershed. Nitrogen watershed response time to a change in atmospheric nitrogen deposition was 4 years for Nahunta and 2 years for Little River. We attribute these differences in nitrogen response time to contrasts in agricultural land use and diversity of crop types. Soybean, hay, and corn land covers had comparatively longer response times to changes in atmospheric deposition. The studied watersheds demonstrate relatively large nitrogen retention: ≥80 % of all delivered nitrogen.  相似文献   
44.
Risk characterization is defined by both the U.S. National Academy of Sciences and the U.S. EPA as the estimation of human health risk due to harmful (i.e., toxic or carcinogenic) substances or organisms. Risk characterization studies are accomplished by integrating quantitative exposure estimates and dose-response relationships with the qualitative results of hazard identification.

A Risk Characterization Framework has been developed to encourage a systematic approach for analysis and presentation of risk estimates. This methodology subdivides the four common components of the risk assessment process into ten elements. Each of these elements is based on a term in a predictive risk equation. The equation allows independent computations of exposure, dose, lifetime individual risk, and risk to affected populations. All key assumptions in the predictive risk equation can be explicitly shown. This is important to understand the basis and inherent uncertainties of the risk estimation process.

The systematic treatment of each of the ten elements in this framework aids in the difficult job of comparing risk estimates by different researchers using different methodologies. The Risk Characterization Framework has been applied to various indoor and outdoor air pollutants of a carcinogenic nature. With further development, it also promises to be applicable to noncarcinogenic effects.  相似文献   
45.
46.
The analysis of pressure loss characteristics for pulse jet filters suggests that the relationship between dust adhesion to the fabric and the opposing force generated by pulse jet action plays a major role in dust removal. Hence, fabric cleanability is examined in terms of the adhesion-cohesion forces bonding the dust to the fabric vs. the intensity and frequency of the dust dislodgement forces produced by the high energy air pulses. The effect of jet size and location, jet air volume, and the intensity (pressure) and duration of the jet pulses is related to operating pressure loss.

The mechanics of energy transfer from the jet pulse to the dustladen fabric are explored in terms of jet pressure, solenoid valve action, the ratio of delivered pulse air volume to bag (tube) volume, and the elastic and flex properties of the felt bags. Effective and actual fabric dust holdings before and after cleaning are discussed with respect to steady-state dust deposition and removal rates, and operating pressure losses. Finally, predictive equations are proposed for estimating pressure loss over a broad range of design and operating parameters.  相似文献   
47.
Environmental Science and Pollution Research - A quantitative microbial risk assessment was conducted to assess the health risks associated with the exposure of agricultural workers to tertiary...  相似文献   
48.
49.
Impacts of freshwater wetlands on water quality: A landscape perspective   总被引:5,自引:0,他引:5  
In this article, we suggest that a landscape approach might be useful in evaluating the effects of cumulative impacts on freshwater wetlands. The reason for using this approach is that most watersheds contain more than one wetland, and effects on water quality depend on the types of wetlands and their position in the landscape. Riparian areas that border uplands appear to be important sites for nitrogen processing and retention of large sediment particles. Fine particles associated with high concentrations of phosphorus are retained in downstream wetlands, where flow rates are slowed and where the surface water passes through plant litter. Riverine systems also may play an important role in processing nutrients, primarily during flooding events. Lacustrine wetlands appear to have the least impact on water quality, due to the small ratio of vegetated surface to open water. Examples are given of changes that occurred when the hydrology of a Maryland floodplain was altered.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号