首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10277篇
  免费   77篇
  国内免费   46篇
安全科学   172篇
废物处理   506篇
环保管理   788篇
综合类   1573篇
基础理论   2135篇
环境理论   6篇
污染及防治   2903篇
评价与监测   886篇
社会与环境   1396篇
灾害及防治   35篇
  2023年   63篇
  2022年   189篇
  2021年   201篇
  2020年   86篇
  2019年   106篇
  2018年   260篇
  2017年   238篇
  2016年   361篇
  2015年   208篇
  2014年   433篇
  2013年   896篇
  2012年   465篇
  2011年   509篇
  2010年   403篇
  2009年   394篇
  2008年   524篇
  2007年   566篇
  2006年   473篇
  2005年   395篇
  2004年   361篇
  2003年   323篇
  2002年   296篇
  2001年   296篇
  2000年   238篇
  1999年   119篇
  1998年   79篇
  1997年   85篇
  1996年   68篇
  1995年   103篇
  1994年   80篇
  1993年   68篇
  1992年   64篇
  1991年   65篇
  1990年   81篇
  1989年   62篇
  1988年   47篇
  1987年   41篇
  1986年   49篇
  1985年   51篇
  1984年   52篇
  1983年   38篇
  1982年   51篇
  1981年   36篇
  1980年   46篇
  1979年   47篇
  1972年   40篇
  1969年   34篇
  1964年   47篇
  1959年   38篇
  1958年   45篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
341.
Fenamiphos (0-ethyl-0(3-methyl-4-methylthiophenyl)-isopropylamido-phosphate) is a widely used nematicide and insecticide in bowling greens and agriculture, but information on its sorption including its metabolites is limited. Hence, the sorption of fenamiphos (nematicide) and its major degradation products fenamiphos sulfoxide (FSO) and fenamiphos sulfone (FSO2) were determined in thirteen contrasting soils collected from Australia and Ecuador. The sorption coefficients (Kd) exhibited a wide range of variation from 2.48 to 14.94 L/Kg for fenamiphos; from 0 to 7.42 L/Kg for FSO and from 0 to 9.49 L/Kg for FSO2. The sorption affinity of the three compounds for all soils tested was as follows: fenamiphos > fenamiphos sulfone > fenamiphos sulfoxide. The results showed that the sorption of fenamiphos and its metabolites in some soils is very low, and in one case is nonexistant for the metabolites. This is of particular concern as due to its low sorption coefficient, the compound could easily migrate and contaminate water bodies. Fenamiphos and its oxidation products have been reported to be highly toxic to aquatic invertebrates and therefore, the information generated in this study assumes great importance in the risk assessment of fenamiphos and its metabolites in the environment.  相似文献   
342.
The adsorption of chloridazon (5-amine-4-chloro-2-phenylpyridazin-3(2H)-one) on kerolite samples heated at 110 degrees C (K-110), 200 degrees C (K-200), 400 degrees C (K-400), 600 degrees C (K-600) and acid-treated with H(2)SO(4) solutions of two different concentrations (0.25 and 0.5 M) (K-0.25 and K-0.5, respectively) from pure water at 25 degrees C has been studied by using batch and column experiments. The adsorption experimental data points were fitted to the Freundlich equation in order to calculate the adsorption capacities (K(f)) of the samples; K(f) values ranged from 184.7 mg kg(-1) (K-0.5) up to 2253 mg kg(-1) (K-600). This indicated that the heat treatment given to the kerolite greatly increases its adsorption capacity for the herbicide whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) was also calculated; R values ranging from 52.8% (K-0.5) up to 88.3% (K-600). Thus, the results showed that the 600 degrees C heat-treated kerolite was more effective in relation to adsorption of chloridazon and it might be reasonably used in removing this herbicide from water.  相似文献   
343.
Assessment of the phytoextraction potential of high biomass crop plants   总被引:4,自引:0,他引:4  
A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg(-1)), Zn (10 916 mg kg(-1)), and Cd (242 mg kg(-1)), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot(-1). We concluded that the phytoextraction performance of cultivars varies depending on the screening method used.  相似文献   
344.
This paper examines the development of aerobic granular sludge in the presence of a synthetic chelating agent, nitrilotriacetic acid (NTA), in sequencing batch reactors (SBR). The growth of seed sludge at 0.26 mM, 0.52 mM and 1.05 mM of NTA was found to be significantly lower as compared to that in the absence of NTA. Aerobic granulation was significantly enhanced in the three SBRs (R2, R3 and R4), which were fed with 0.26 mM, 0.52 mM and 1.05 mM of NTA as a co-substrate, in comparison to the acetate-alone fed SBR (R1). After 2 months of operation, the mean diameter of the biomass stabilized at 0.35 mm in R1 (acetate alone), as compared to 2.18 mm in R4 (1.05 mM NTA+acetate). NTA degradation was established in SBRs, with almost complete removal during the SBR cycle. Batch experiments also showed efficient degradation of NTA by the aerobic granules.  相似文献   
345.
Pesticide mineralization and sorption were determined in 75 soil samples from 15 individually drilled holes through the vadose zone along a 28 km long transect of the Danish outwash plain. Mineralization of the phenoxyacetic acid herbicide MCPA was high both in topsoils and in most subsoils, while metribuzine and methyltriazine-amine was always low. Organic matter and soil pH was shown to be responsible for sorption of MCPA and metribuzine in the topsoils. The sorption of methyltriazine-amine in topsoil was positively correlated with clay and negatively correlated with the pH of the soil. Sorption of glyphosate was tested also high in the subsoils. One-dimensional MACRO modeling of the concentration of MCPA, metribuzine and methyltriazine-amine at 2 m depth calculated that the average concentration of MCPA and methyltriazine-amine in the groundwater was below the administrative limit of 0.1 μg/l in all tested profiles while metribuzine always exceeded the 0.1 μg/l threshold value.  相似文献   
346.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
347.
A porous clay heterostructure (PCH) from a Mexican clay was prepared and characterized, and its aqueous phenol and dichlorophenols (DCPs) adsorption capacities were studied using a batch equilibrium technique. The PCH displayed a surface area of 305.5 m2/g, 37.2 A average porous diameter, and a basal space of 23.2 A. The adsorption capacity shown by the PCH for both phenol and DCPs from water (14.5 mg/g for phenol; 48.7 mg/g for 3,4-DCP; and 45.5 mg/g for 2,5-DCP) suggests that the PCH has both hydrophobic and hydrophilic characteristics, as a result of the presence of silanol and siloxane groups formed during the pillaring and calcination of the PCH. The values of maximal adsorption capacity for dichlorophenols were higher than those reported for aluminum pillared clays and some inorgano-organo clays and comparable with some ionic exchange resins.  相似文献   
348.
Dated sediment cores provide an excellent way to investigate the historical input of persistent organic pollutants into the environment and to identify possible sources of pollution. The vertical distribution of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/F) and polychlorinated biphenyls (PCB) was investigated in a sediment core from Greifensee to elucidate the historical trends of PCDD/F and PCB inputs between 1848 and 1999. Concentrations of PCB and PCDD/F increased by more than one order of magnitude between 1930 and 1960. PCB and PCDD/F concentrations were 5700 ng/kg dry weight (dw) and 160 ng/kg dw, respectively, in sediments originating from the late 1930s and reached a maximum of 130,000 ng/kg dw and 2400 ng/kg dw, respectively, in the early 1960s. From 1960 on, concentrations decreased to the 1930s level by the mid 1980s. A remarkable shift in the PCDD/F pattern was observed after the early 1940s. Before 1940, the PCDD/F pattern was PCDF dominated (ratio of PCDD to PCDF=0.41+/-0.11), while the PCDD started to be the major species after the early 1940s (ratio of PCDD to PCDF=1.46+/-0.38). The temporal trends of PCB and PCDD/F correlate surprisingly well with each other. This might be due to the coincidence of two factors. The introduction of PCB on the market in the 1930s resulted in emissions due to the widespread use of these industrial chemicals. In the same time period, waste incineration became an increasingly popular way to get rid of garbage, boosting the PCDD/F emissions significantly. The rapid decline of PCDD/F and PCB concentrations in the sediment starting in the early 1960s reflects the result of better emission control techniques in thermal processes and the improvement of waste water treatment in the catchment of Greifensee.  相似文献   
349.
Monitoring of immission of persistent organic pollutants in the industrialized area of Volta Redonda (V.R.) and in the National Park of Itatiaia (PNI) in southeast Brazil was performed using an endemic bromeliad species as biomonitor and measuring bulk deposition rates of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). For the sum of PCB, overall deposition rates were between 17 and 314 ng/(m2 day) in winter and between 43 and 81 ng/(m2 day) in summer, respectively. Deposition rates of dioxin-like PCBs ranged from 0.14 to 2.8 pg WHO-TEQ/(m2 day) in winter and from 0.90 to 4.3 pg WHO-TEQ/(m2 day) in summer. PCB deposition rates (total PCB and WHO-TEQ) were in the same range in winter in V.R. and PNI. In summer, contamination levels in V.R. were 6-10-folds higher than in PNI. PCB concentrations in biomonitor samples from V.R. and PNI were in the same range in summer and in winter. Concentrations of total PCB ranged from 14 to 95 microg/kg dry matter (d.m.) in winter and from 18 to 27 microg/kg d.m. in summer, respectively. The TEQ values were between 1.7 and 4.1 ng WHO-TEQ/kg d.m. in winter and between 1.9 and 2.9 ng WHO-TEQ/kg d.m. in summer. PCB concentrations of di-ortho PCB but not of non-ortho PCB were a factor of 2-4 lower in summer in both areas. PCB congener profiles resembled those from technical formulations. The profiles shifted to the higher chlorinated congeners in summer, probable due to revolatilisation of the lighter components at higher temperatures. PCB profiles in biomonitor resembled those from deposition samples and the shift to the heavier congeners in summer was even more pronounced. PAH deposition rates were in a similar range in both areas (131-2415 ng/(m2 day)). PAH levels in biomonitor samples from V.R. were about one order of magnitude higher than in samples from PNI indicating the impact of local sources. PAH profiles revealed stationary thermal processes as main source of contamination in V.R. whereas in PNI, biomass burning seems to be the main contamination source.  相似文献   
350.
Atrazine sorption and fate in a Ultisol from humid tropical Brazil   总被引:1,自引:0,他引:1  
This study combined laboratory based microcosm systems as well as field experiments to evaluate the mobility of atrazine on a Ultisol under humid tropical conditions in Brazil. Results from sorption experiments fit to the Freundlich isotherm model [K(f) 0.99 mg kg(-1)/(mg l(-1))(1/n)], and indicate a low sorption capacity for atrazine in this soil and consequently large potential for movement by leaching and runoff. Microcosm systems using (14)C-atrazine to trace the fate of the applied herbicide, showed that 0.33% of the atrazine was volatilized, 0.25% mineralized and 6.89% was recorded in the leachate. After 60 d in the microcosms, 75% of the (14)C remained in the upper 5 cm soil layer indicating atrazine or its metabolites remained close to the soil surface. In field experiments, after 60 d, only 5% of the atrazine applied was recovered in the upper soil layers. In the field experiments atrazine was detected at a depth of 50 cm indicating leaching. Simulating tropical rain in field experiments resulted in 2.1% loss of atrazine in runoff of which 0.5% was adsorbed onto transported soil particles and 1.6% was in solution. Atrazine runoff was greatest two days after herbicide application and decreased 10 fold after 15 d. The use of atrazine on Ultisols, in the humid tropics, constitutes a threat to water quality, causing surface water and ground water pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号