首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10277篇
  免费   77篇
  国内免费   46篇
安全科学   172篇
废物处理   506篇
环保管理   788篇
综合类   1573篇
基础理论   2135篇
环境理论   6篇
污染及防治   2903篇
评价与监测   886篇
社会与环境   1396篇
灾害及防治   35篇
  2023年   63篇
  2022年   189篇
  2021年   201篇
  2020年   86篇
  2019年   106篇
  2018年   260篇
  2017年   238篇
  2016年   361篇
  2015年   208篇
  2014年   433篇
  2013年   896篇
  2012年   465篇
  2011年   509篇
  2010年   403篇
  2009年   394篇
  2008年   524篇
  2007年   566篇
  2006年   473篇
  2005年   395篇
  2004年   361篇
  2003年   323篇
  2002年   296篇
  2001年   296篇
  2000年   238篇
  1999年   119篇
  1998年   79篇
  1997年   85篇
  1996年   68篇
  1995年   103篇
  1994年   80篇
  1993年   68篇
  1992年   64篇
  1991年   65篇
  1990年   81篇
  1989年   62篇
  1988年   47篇
  1987年   41篇
  1986年   49篇
  1985年   51篇
  1984年   52篇
  1983年   38篇
  1982年   51篇
  1981年   36篇
  1980年   46篇
  1979年   47篇
  1972年   40篇
  1969年   34篇
  1964年   47篇
  1959年   38篇
  1958年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
481.
Integrated pipe manufacturing industry is operation intensive and has significant air pollution potential especially when it is equipped with a captive power production facility. Emissions of SO2, NO x , and particulate matter (PM) were estimated from the stationary sources in a state-of-the-art pipe manufacturing plant in India. Major air polluting units like blast furnace, ductile iron spun pipe facility, and captive power production facility were selected for stack gas monitoring. Subsequently, ambient air quality modeling was undertaken to predict ground-level concentrations of the selected air pollutants using Industrial Source Complex (ISC 3) model. Emissions of SO2, NO x , and particulate matter from the stationary sources in selected facilities ranged from 0.02 to 16.5, 0.03 to 93.3, and 0.09 to 48.3 kg h???1, respectively. Concentration of SO2 and NO x in stack gas of 1,180-kVA (1 KW = 1.25 kVA) diesel generator exceeded the upper safe limits prescribed by the State Pollution Control Board, while concentrations of the same from all other units were within the prescribed limits. Particulate emission was highest from the barrel grinding operation, where grinding of the manufactured pipes is undertaken for giving the final shape. Particulate emission was also high from dedusting operation where coal dust is handled. Air quality modeling indicated that maximum possible ground-level concentration of PM, SO2, and NO x were to the tune of 13, 3, and 18 μg/m3, respectively, which are within the prescribed limits for ambient air given by the Central Pollution Control Board.  相似文献   
482.
PM10 continental rural background aerosols were collected during a summer field campaign (August–September 2006) at Lamas de Ôlo in the upper zone of the Alvão Natural Park, a mountain region of northern Portugal. In addition to the determination of the carbonaceous content by a thermal–optical method, the organic speciation of aerosols was performed by gas chromatography–mass spectrometry in an effort to evaluate photo-oxidation products of biogenic volatile organic compounds and other markers for source characterization. The detailed analysis revealed relatively high concentrations of polyols and short-chain dicarboxylic, tricarboxylic, hydroxycarboxylic, and oxocarboxylic acids, many of which are thought to be indicators of secondary aerosol formation, accounting for about 70% of global chromatographically resolved mass. Major photo-oxidation products of α- and β-pinene have been detected. The tracers for the photo-oxidation of isoprene comprise two diastereoisomeric 2-methyltetrols, C5-alkene triols, and 2-methylglyceric acid, which have only recently been elucidated. In addition, the occurrence of levoglucosan and other biomass combustion tracers indicates that the site was affected by wildfires. This source contributed to more than 80% of the organic carbon mass during a period of strong forest fire influence.  相似文献   
483.
A pilot-scale pyrolysis process was carried out for the treatment of a mixture of two types of waste, sewage sludge and cattle manure, comparing the results with others obtained under laboratory conditions (semi-pilot scale). The aim of this study was to obtain the energetic valorization of the products. Owing to the specific characteristics of the plant, two products were obtained from the process: gas and carbonized solid. As no liquid fraction was obtained, the gas fraction is a greater percentage made up of both condensable and non-condensable compounds, which were obtained separately at the laboratory scale. The pilot plant was designed so that the gases produced by thermolysis were burnt continuously in a combustion chamber, while the carbonized fraction was fed in batches for co-combustion. To determine composition and combustion ability, the gas and solid products from the pilot process were characterized by chromatographic analysis of the gaseous fraction and chemical analysis and programmed-temperature combustion of the carbonized solid. The composition of the combustion gases, rich in light hydrocarbons, and the carbon present in the carbonized fraction enable the energetic valorization of these products. The combustion gases were subjected to a cleaning process and their composition analysed twice: before and after the gas cleaning treatment. The study led to a positive assessment of the possible use of the process products as fuel, provided that the combustion gases are treated. As most of the sulphur and chlorine from the original waste are mainly concentrated in the solid fraction, the use of char as a fuel will depend on the effectiveness of clean-up techniques for combustion gases. During gas cleansing, neutralizing with sodium bicarbonate proved effective, especially for the acidic compounds HCl, HF and SO(2).  相似文献   
484.
New composite materials based on an alkali-resistant glass-fibre reinforced cement (AR-GRC) system are being developed by using fly ash (FA) produced at coal thermoelectric power plants, and fluid catalytic cracking catalyst residue (FC3R) from the petrol industry as cement replacement materials. These wastes are reactive from the pozzolanic viewpoint, and modify the nature and the microstructure of the cement matrix when a part of the Portland cement is replaced in the formulation of GRC. Several microstructural and mechanical aspects are being studied for AR-GRC systems. The behaviour of composites exposed to ageing shows that the pozzolanic activity of the ground FA added in high amounts and its mixture with the FC3R increase the flexural strength and no evidences of strength decay are observed. Additionally, the fibres due to the high alkalinity of the cementing matrix can be deteriorated. Fibres in the control (only Portland cement) and FC3R containing composites were attacked, whereas composites with FA and their mixture with FC3R show that the fibres have not been attacked, due to the pozzolanic activity of replacing materials that reduce the calcium hydroxide content in the cementing matrix.  相似文献   
485.
Leachate recirculation or liquid injection in municipal solid waste landfills offers economic and environmental benefits. The key objective of this study was to carry out numerical evaluation of key design variables for leachate recirculation system consisting of vertical wells. In order to achieve the objective, numerical modeling was carried out using the finite-element model HYDRUS-2D. The following design parameters were evaluated by simulating liquid pressure head on the liner and the wetted width of the waste under steady-state flow conditions: (1) hydraulic conductivities of the waste and vertical well backfill; (2) liquid injection rate and dosing frequency; (3) well diameter, screen height and screen depth; and (4) hydraulic conductivity of the leachate collection system, slope of the leachate collection system and spacing of the leachate collection pipes. The key findings of this study are as follows. The well diameter, hydraulic conductivity of the well drainage pack, and screen height and screen depth of the well have very little effect on the wetted width for a given liquid flux. The wetted width and the injection pressure for a given liquid flux decrease with the increase in the hydraulic conductivity of the waste. The pressure head on the liner increases with the decrease in the vertical distance between the bottom of the well screen and the top of leachate collection system. The liquid injection flux increases with the decrease in hydraulic conductivity of the leachate collection system. Unlike sand (k approximately 10(-4)m/s), pea gravel (k approximately 0.01 m/s) resulted in less than 0.3m pressure head on the liner for all simulations carried out in this study.  相似文献   
486.
The purpose of this study is to determine the impact of leachate recirculation on the degradation of municipal solid wastes (bioreactor concept). The study was carried out using columns containing approximately 50 kg of waste, in order to follow waste degradation over a limited time. Three types of waste were studied: fresh waste of standard composition, fresh waste of fermentable composition and some 8-yr-old waste extracted from a site in France. Measurement of the global parameters, such as chemical oxygen demand (COD), volatile acidity, alkalinity, leachate conductivity, methane potential of the wastes and biogas production monitoring (volume of CO2 and CH4 produced), were carried out. The quantity of oxydizable matter and biogas production was increased by the leachate recirculation, and the duration of the first degradation phases was reduced in all cases. Chloride, ammonium and organic pollution accumulation was observed according to the duration of recirculation. After 400 days of degradation, waste stabilization seemed to be reached for all of the recirculated columns (COD<300 mg/L O2, and methane potential reached).  相似文献   
487.
In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth > photosynthetic pigments content = photosynthetic O2 evolution > photosynthetic electron transport > respiration. The uncoupled relationship between growth and metabolism is discussed.  相似文献   
488.
Otero M  Gómez X  García AI  Morán A 《Chemosphere》2007,69(11):1740-1750
Combustion of urban sewage sludge together with coal in existing infrastructures may be a sustainable management option energetically interesting for these materials, usually considered wastes. Thermogravimetric analysis was used to study the combustion of a semianthracite coal and the modifications undergone when adding a small percentage (2%, 5%, 10%) of sewage sludge. Both Differential Scanning Calorimetric analysis and Differential Thermogravimetry burning profiles showed differences between coal and sewage sludge combustion. However, the effects of adding a percentage of sewage sludge equal or smaller than 10% was hardly noticeable in terms of heat release and weight loss during the coal combustion. This was further proved by non-isothermal kinetic analysis, which was used to evaluate the Arrhenius activation energy corresponding to the co-combustion of the blends. This work shows that thermogravimetric analysis may be used as an easy rapid tool to asses the co-combustion of sewage sludge together with coal.  相似文献   
489.
Sediment characteristics are well known to interfere with toxicity, mainly through differences in terms of bioaccumulation. Here, with chironomids exposed to zinc in an artificial and a field sediment, we investigated the differences of zinc accumulation and of effects on the life cycle, at individual and population level. We used biology and energy-based modeling to analyze the data at all the levels of biological organization. This permits a reliable estimation of thresholds values for tissue residues. Differences in zinc tissue residues accounted for most of the differences between the results for both sediments (a factor of 11 for differences from 20 to 100 depending on the parameter which is considered). Taking into account accumulation and background variability, the differences relative to thresholds could be accounted for. However, it appeared that, once the threshold was passed, effects were much more pronounced for organisms exposed to artificial sediment compared to field sediment. We concluded that some sediment characteristics can enhance toxicity, in addition to their influence on the compound accumulation, even if the latter was the major source of differences in our study.  相似文献   
490.
This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号