首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   755篇
  免费   2篇
  国内免费   5篇
安全科学   24篇
废物处理   16篇
环保管理   236篇
综合类   51篇
基础理论   139篇
污染及防治   220篇
评价与监测   56篇
社会与环境   16篇
灾害及防治   4篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2018年   3篇
  2017年   4篇
  2016年   14篇
  2015年   5篇
  2014年   4篇
  2013年   104篇
  2012年   17篇
  2011年   26篇
  2010年   26篇
  2009年   24篇
  2008年   36篇
  2007年   37篇
  2006年   43篇
  2005年   21篇
  2004年   32篇
  2003年   28篇
  2002年   31篇
  2001年   12篇
  2000年   16篇
  1999年   7篇
  1998年   14篇
  1997年   14篇
  1996年   12篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   12篇
  1990年   5篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   17篇
  1983年   14篇
  1982年   9篇
  1981年   13篇
  1980年   3篇
  1979年   14篇
  1978年   8篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
排序方式: 共有762条查询结果,搜索用时 31 毫秒
31.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   
32.
33.
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   
34.
ABSTRACT

Stable heterogeneous catalysts for the oxidative removal of CO from air at ambient temperatures have been developed. An alumina support impregnated with PdCl2, CuCl2, and CuSO4 is described. Optimal activity was obtained with Pd 0.020 mol/kg, Cu 0.50 mol/kg, CuCl2 20-30% of total Cu, a 2- to 24-hr soak, filtration of surplus raffinate, and a 2- to 4-hr firing in air at 200-350 °C. The catalysts are effective at 20-26 °C and relative humidities in the 15-90% range. They are reversibly deactivated by completely dry or water-saturated air streams. These catalysts have been tested at space velocities up to 30,000 hr-1. In contact with <100 ppm CO, they are highly efficient, removing ~99% of the CO with contact times of ~120 msec (pseudo-first order k' > 25 sec-1). At much higher CO concentrations, the maximum CO loading rate—limited by the Cu(I) reoxidation rate—is approximately 17 m mol CO per Limol Pd per hour.  相似文献   
35.
36.
ABSTRACT

Measurements of 15-min average PM2.5 concentrations were made with a real-time light-scattering instrument at both outdoor (central monitoring sites in three communities) and indoor (residential) locations over two seasons in the Minneapolis-St. Paul metropolitan area. These data are used to examine within-day variability of PM2.5 concentrations indoors and outdoors, as well as matched indoor-to-outdoor (I/O) ratios. Concurrent gravimetric measurements of 24-hr average PM2.5 concentrations were also obtained as a way to compare real-time measures with this more traditional metric. Results indicate that (1) within-day variability for both indoor and outdoor 15-min average PM2.5 concentrations was substantial and comparable in magnitude to day-to-day variability for 24hr average concentrations; (2) some residences exhibited substantial variability in indoor aerosol characteristics from one day to the next; (3) peak values for indoor short-term (15-min) average PM2.5 concentrations routinely exceeded 24-hr average outdoor values by factors of 3-4; and (4) relatively strong correlations existed between indoor and outdoor PM2.5 concentrations for both 24-hr and 15-min averages.  相似文献   
37.
The objective of this study was to determine if the incidence or severity of foliar injury induced by regional, ambient ozone was influenced by local emissions from a complex of coal-burning power plants in southwestern Pennsylvania. Plantings of an ozonesensitive hybrid poplar clone {Populus maximowizii x trichocarpa, clone NE 388) were established in 1972 at various distances and directions from the power plants. Foliar injury caused by ambient ozone was evaluated annually from 1973 to 1990 in early to mid- August. Data are presented for the 12-year period, 1979 to 1990 inclusive, for which the most complete data sets were available. Injury from ambient ozone varied spatially and temporally, but with little relationship to power plant location. There was an apparent negative relationship between emission trends and ozone-induced symptoms, but only for one power plant. The correlation between annual mean levels of ozone-induced stipple and frequency of days (per year) with a 1-hr ozone maximum exceeding 0.04 ppm was weak, but significant. Ozone-induced bifacial necrosis was not observed on the foliage of the hybrid poplar during the drought year of 1988 in spite of record high levels of ozone; however, ozoneinduced stipple was observed.  相似文献   
38.
Abstract

Apportionment of primary and secondary pollutants during the summer 2001 Pittsburgh Air Quality Study (PAQS) is reported. Several sites were included in PAQS, with the main site (the supersite) adjacent to the Carnegie Mellon University campus in Schenley Park. One of the additional sampling sites was located at the National Energy Technology Laboratory, located ~18 km southeast of downtown Pittsburgh. Fine particulate matter (PM2.5) mass, gas-phase volatile organic material (VOM), particulate semivolatile and nonvolatile organic material (NVOM), and ammonium sulfate were apportioned at the two sites into their primary and secondary contributions using the U.S. Environmental Protection Agency UNMIX 2.3 multivariate receptor modeling and analysis software. A portion of each of these species was identified as originating from gasoline and diesel primary mobile sources. Some of the organic material was formed from local secondary transformation processes, whereas the great majority of the secondary sulfate was associated with regional transformation contributions. The results indicated that the diurnal patterns of secondary gas-phase VOM and particulate semivolatile and NVOM were not correlated with secondary ammonium sulfate contributions but were associated with separate formation pathways. These findings are consistent with the bulk of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport and, thus, decoupled from local activity involving organic pollutants in the metropolitan area.  相似文献   
39.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   
40.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号