首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15956篇
  免费   200篇
  国内免费   134篇
安全科学   452篇
废物处理   584篇
环保管理   2192篇
综合类   3089篇
基础理论   4003篇
环境理论   10篇
污染及防治   3922篇
评价与监测   972篇
社会与环境   940篇
灾害及防治   126篇
  2022年   122篇
  2021年   126篇
  2020年   110篇
  2019年   135篇
  2018年   200篇
  2017年   241篇
  2016年   333篇
  2015年   283篇
  2014年   371篇
  2013年   1340篇
  2012年   476篇
  2011年   632篇
  2010年   507篇
  2009年   572篇
  2008年   635篇
  2007年   665篇
  2006年   625篇
  2005年   503篇
  2004年   488篇
  2003年   499篇
  2002年   434篇
  2001年   544篇
  2000年   424篇
  1999年   243篇
  1998年   199篇
  1997年   191篇
  1996年   209篇
  1995年   216篇
  1994年   208篇
  1993年   205篇
  1992年   215篇
  1991年   204篇
  1990年   204篇
  1989年   175篇
  1988年   152篇
  1987年   132篇
  1986年   157篇
  1985年   158篇
  1984年   160篇
  1983年   162篇
  1982年   156篇
  1981年   162篇
  1980年   151篇
  1979年   145篇
  1978年   108篇
  1977年   121篇
  1974年   109篇
  1973年   91篇
  1972年   107篇
  1971年   89篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
We present a new method for estimating a distribution of dispersal displacements (a dispersal kernel) from mark-recapture data. One conventional method of calculating the dispersal kernel assumes that the distribution of displacements are Gaussian (e.g. resulting from a diffusion process) and that individuals remain within sampled areas. The first assumption prohibits an analysis of dispersal data that do not exhibit the Gaussian distribution (a common situation); the second assumption leads to underestimation of dispersal distance because individuals that disperse outside of sampling areas are never recaptured. Our method eliminates these two assumptions. In addition, the method can also accommodate mortality during a sampling period. This new method uses integrodifference equations to express the probability of spatial mark-recapture data; associated dispersal, survival, and recapture parameters are then estimated using a maximum likelihood method. We examined the accuracy of the estimators by applying the method to simulated data sets. Our method suggests designs for future mark-recapture experiments. Received: January 2004 / Revised: July 2005  相似文献   
993.
At the present, the long period (from 3 up to 12 months) to form roots from rhizome cuttings of Posidonia oceanica is the major cause of transplant failure. To promote earlier rooting, the effects of different concentrations (5 and 10 mg/l) of two auxins, namely indole-3-butyric acid (IBA) and α-naphtalen aetic acid (NAA), and the time of collection on rooting of plagiotropic and orthotropic cuttings of P. oceanica were tested. Rooting, survival and growth of cuttings were assessed 1 month after planting in a mesocosm. Results demonstrated that the use of auxin was essential to achieve root initiation within the observation period. Irrespective of plant source and collection time, IBA and NAA (5 mg/l) treatments increased the rooting capacity in cuttings. The highest rooting success (i.e. percentage of the survived cuttings that rooted) obtained was 33%. Results also revealed that the survival rate and percentages of cuttings with leaf growth and emergence of new leaves on their terminal shoot were influenced by the collection time × plant source interaction, but were unaffected by the auxin treatment. Orthotropic cuttings taken in November and February showed the highest survival rate (100%). No differences in survival among months were detected for plagiotropic cuttings. In May and July, more plagiotropic cuttings survived (80±7 and 75±6%) compared to orthotropic cuttings (58±7 and 51±4%). Overall, more plagiotropic cuttings showed leaf elongation compared to orthotropic ones, but the inverse was observed in November. A higher percentage of cuttings with emergence of new leaves was observed in the plagiotropic type as compared to the orthotropic one, and in general February and November were the best months for leaf production (28±4 and 38±7%). Finally, the percentage of cuttings that had changed leaf growth orientation (from orthotropic to plagiotropic) was significantly higher in November (63±13%) compared to the other months and tended to be higher in cuttings treated with the auxins compared to controls. These preliminary findings indicate that exposure to IBA or NAA (5 mg/l) was effective in stimulating rooting in P. oceanica without inhibiting plant growth. Therefore, this simple pre-planting practice should be beneficial in restoration attempts. Based on the trend observed, rhizomes should be prepared preferably in late autumn–winter and then planted into restoration stands to achieve a prompt rooting response and the best survival rate. Clearly, future work is needed to maximize the rooting success of cuttings.  相似文献   
994.
995.
We examined the distribution and ancestral relationships of genetic caste determination (GCD) in 46 populations of the seed-harvester ants Pogonomyrmex barbatus and P. rugosus across the east-to-west range of their distributions. Using a mtDNA sequence and two nuclear markers diagnostic for GCD, we distinguished three classes of population phenotypes: those with GCD, no evidence of GCD, and mixed (both GCD and non-GCD colonies present). The GCD phenotype was geographically widespread across the range of both morphospecies, occurring in 20 of 46 sampled populations. Molecular data suggest three reproductively isolated and cryptic lineages within each morphospecies, and no present hybridization. Mapping the GCD phenotype onto a mtDNA phylogeny indicates that GCD in P. rugosus was acquired from P. barbatus, suggesting that interspecific hybridization may not be the causal agent of GCD, but may simply provide an avenue for GCD to spread from one species (or subspecies) to another. We hypothesize that the origin of GCD involved a genetic mutation with a major effect on caste determination. This mutation generates genetic conflict and results in the partitioning and maintenance of distinct allele (or gene set) combinations that confer differences in developmental caste fate. The outcome is two dependent lineages within each population; inter-lineage matings produce workers, while intra-lineage matings produce reproductives. Both lineages are needed to produce a caste-functional colony, resulting in two reproductively isolated yet interdependent lineages. Pogonomyrmex populations composed of dependent lineages provide a unique opportunity to investigate genetic variation underlying phenotypic plasticity and its impact on the evolution of social structure.  相似文献   
996.
Catchment urbanization can alter physical, chemical, and biological attributes of stream ecosystems. In particular, changes in land use may affect the dynamics of organic matter decomposition, a measure of ecosystem function. We examined leaf-litter decomposition in 18 tributaries of the St. Johns River, Florida, USA. Land use in all 18 catchments ranged from 0% to 93% urban which translated to 0% to 66% total impervious area (TIA). Using a litter-bag technique, we measured mass loss, fungal biomass, and macroinvertebrate biomass for two leaf species (red maple [Acer rubrum] and sweetgum [Liquidambar styraciflua]). Rates of litter mass loss, which ranged from 0.01 to 0.05 per day for red maple and 0.006 to 0.018 per day for sweetgum, increased with impervious catchment area to levels of approximately 30-40% TIA and then decreased as impervious catchment area exceeded 40% TIA. Fungal biomass was also highest in streams draining catchments with intermediate levels of TIA. Macroinvertebrate biomass ranged from 17 to 354 mg/bag for red maple and from 15 to 399 mg/bag for sweetgum. Snail biomass and snail and total invertebrate richness were strongly related to breakdown rates among streams regardless of leaf species. Land-use and physical, chemical, and biological variables were highly intercorrelated. Principal-components analysis was therefore used to reduce the variables into several orthogonal axes. Using stepwise regression, we found that flow regime, snail biomass, snail and total invertebrate richness, and metal and nutrient content (which varied in a nonlinear manner with impervious surface area) were likely factors affecting litter breakdown rates in these streams.  相似文献   
997.
The desert tortoise (Gopherus agassizii) is federally listed as "threatened" and is afforded protection in several U.S. states including California, Nevada, Utah, and Arizona. Numerous factors ranging from habitat destruction to disease are thought to contribute to the species' decline throughout its range. Data collection on desert tortoises in the wild is challenging because tortoises are secretive, and many age and size classes are virtually undetectable in the wild. Detection dogs have been used for decades to assist humans, and the use of dogs for wildlife surveys is of increasing interest to scientists and wildlife managers. To address the basic question of whether dogs could be used to survey for the desert tortoise, we quantified the reliability and efficacy of dogs trained for this purpose. Efficacy is the number of tortoises that dogs find out of a known population. Reliability is a measure of how many times a dog performs its trained alert when it has found a tortoise. A series of experimental trials were designed to statistically quantify these metrics in the field setting where dogs trained to locate live desert tortoises were tested on their ability to find them on the surface, in burrows, and in mark-recapture surveys. Results indicated that dogs are effective at and can safely locate desert tortoises with reliability on the surface and are capable of detecting tortoises in burrows under a range of environmental conditions. Dogs found tortoises at the same statistical rate at temperatures between 12 degrees and 27 degrees C, relative humidity from 16% to 87%, and wind speeds up to 8 m/s. In both surface and burrow trials, dogs found >90% of the experimental animals. In comparative studies with humans, dogs found tortoises as small as 30 mm, whereas the smallest tortoise located by human survey teams was 110 mm. Although not all dogs or dog teams meet the requirements to conduct wildlife surveys, results from this study show the promise in using dogs to increase our knowledge of rare, threatened, and endangered species through improved data collection methods.  相似文献   
998.
Microbes are known to affect ecosystems and communities as decomposers, pathogens, and mutualists. However, they also may function as classic consumers and competitors with animals if they chemically deter larger consumers from using rich food-falls such as carrion, fruits, and seeds that can represent critical windfalls to both microbes and animals. Microbes often use chemicals (i.e., antibiotics) to compete against other microbes. Thus using chemicals against larger competitors might be expected and could redirect significant energy subsidies from upper trophic levels to the detrital pathway. When we baited traps in a coastal marine ecosystem with fresh vs. microbe-laden fish carrion, fresh carrion attracted 2.6 times as many animals per trap as microbe-laden carrion. This resulted from fresh carrion being found more frequently and from attracting more animals when found. Microbe-laden carrion was four times more likely to be uncolonized by large consumers than was fresh carrion. In the lab, the most common animal found in our traps (the stone crab Menippe mercenaria) ate fresh carrion 2.4 times more frequently than microbe-laden carrion. Bacteria-removal experiments and feeding bioassays using organic extracts of microbe-laden carrion showed that bacteria produced noxious chemicals that deterred animal consumers. Thus bacteria compete with large animal scavengers by rendering carcasses chemically repugnant. Because food-fall resources such as carrion are major food subsidies in many ecosystems, chemically mediated competition between microbes and animals could be an important, common, but underappreciated interaction within many communities.  相似文献   
999.
Coco G  Thrush SF  Green MO  Hewitt JE 《Ecology》2006,87(11):2862-2870
We explore the role of biophysical feedbacks occurring at the patch scale (spatial scale of tens of meters) that influence bivalve physiological condition and affect patch stability by developing a numerical model for the pinnid bivalve, Atrina zelandica, in cohesive sediments. Simulated feedbacks involve bivalve density, flow conditions (assumed to be primarily influenced by local water depth and peak current speed), suspended sediment concentration (evaluated through a balance between background concentration, deposition, and erosion), and changes in the physiology of Atrina derived from empirical study. The model demonstrates that high bivalve density can lead to skimming flow and to a concomitant decrease in resuspension that will affect suspended sediment concentration over the patch directly feeding back on bivalve physiology. Consequently, for a given flow and background suspended sediment load, the stability of a patch directly depends on the size and density of bivalves in the patch. Although under a range of conditions patch stability is ensured independently of bivalve density, simulations clearly indicate that sudden changes in bivalve density or suspended sediment concentration can substantially affect patch structure and lead to different stable states. The model highlights the role of interactions between organisms, flow, and broader scale environmental conditions in providing a mechanistic explanation for the patchy occurrence of benthic suspension feeders.  相似文献   
1000.
Karanth KU  Nichols JD  Kumar NS  Hines JE 《Ecology》2006,87(11):2925-2937
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号