首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   3篇
  国内免费   2篇
安全科学   13篇
废物处理   10篇
环保管理   37篇
综合类   20篇
基础理论   76篇
污染及防治   117篇
评价与监测   51篇
社会与环境   25篇
  2023年   7篇
  2022年   15篇
  2021年   16篇
  2020年   7篇
  2019年   8篇
  2018年   18篇
  2017年   11篇
  2016年   35篇
  2015年   15篇
  2014年   27篇
  2013年   31篇
  2012年   19篇
  2011年   27篇
  2010年   16篇
  2009年   8篇
  2008年   18篇
  2007年   18篇
  2006年   10篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1979年   2篇
  1976年   1篇
  1966年   1篇
排序方式: 共有349条查询结果,搜索用时 328 毫秒
31.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   
32.
33.
Rubio MA  Lissi E  Herrera N  Pérez V  Fuentes N 《Chemosphere》2012,86(10):1035-1039
Phenol, nitrophenols and dinitrophenols were measured in air and dews in downtown Santiago de Chile. In both systems, phenol, 2-nitrophenol (2-NP), and 4-nitrophenol (4-NP) were the compounds found in higher concentrations and with major frequency. Temporal profiles in air were compatible with a significant direct incorporation from mobile sources. The data can be explained in terms of a faster removal of 2-NP than 4-NP, with the former predominating in fresh air masses and 4-NP in more aged samples. All these compounds, as well as dinitrophenols, were found in dew waters. Simultaneous measurements in air and dew indicate that phenol present in dew exceeds that expected in equilibrated samples, while the opposite occurs with 4-NP. This last result is associated to mass transfer limitations for the highly water soluble nitroderivative.  相似文献   
34.
Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution.  相似文献   
35.
Applying amendments to multi-element contaminated soils can have contradictory effects on the mobility, bioavailability and toxicity of specific elements, depending on the amendment. Trace elements and PAHs were monitored in a contaminated soil amended with biochar and greenwaste compost over 60 days field exposure, after which phytotoxicity was assessed by a simple bio-indicator test. Copper and As concentrations in soil pore water increased more than 30 fold after adding both amendments, associated with significant increases in dissolved organic carbon and pH, whereas Zn and Cd significantly decreased. Biochar was most effective, resulting in a 10 fold decrease of Cd in pore water and a resultant reduction in phytotoxicity. Concentrations of PAHs were also reduced by biochar, with greater than 50% decreases of the heavier, more toxicologically relevant PAHs. The results highlight the potential of biochar for contaminated land remediation.  相似文献   
36.
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4 % of samples with a moderate to high pollution degree; 34.6 % have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media.  相似文献   
37.
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1 mL L−1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7 d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7 d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota.  相似文献   
38.
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.  相似文献   
39.
Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.  相似文献   
40.
Dissipation curves of azoxystrobin and of the neonicotinoids acetamiprid and thiacloprid in peach; azinphos-methyl and carbaryl in pear and azoxystrobin, chlorfenapyr and chlorpyrifos in high-tunnel tomato crops were studied in the Southern region of Uruguay. An analytical methodology based on solid phase extraction (SPE) and detection by High Performance Liquid Chromatography with Diode Array Detector (HPLC/DAD) was used for acetamiprid and thiacloprid. Coupled SPE and detection by Gas Chromatography with Mass Selective Detector (GC/MSD) was used for the detection of azinphos-methyl, azoxystrobin, carbaryl, chlorfenapyr and chlorpyrifos residues. Curves were modeled mathematically with Solver program of Microsoft Excel. The best fit for acetamiprid and thiacloprid in peach was achieved with the exponential model (r(2)=0.961 and 0.944, respectively). In the case of peach fruits there is not a Maximum Residue Limit (MRL) for acetamiprid in the Codex Alimentarius, while 0.5 mg/kg is the value rated for thiacloprid. The MRLs accepted by the European Union (EU) are 0.1 mg/kg for acetamiprid and 0.3 mg/kg for thiacloprid. According to the curves determined in these experiments, thiacloprid residues 10 to 12 days after application (daa) were below the MRLs established by both sources. In the case of acetamiprid, 25 daa would be required, according to the exponential mathematical model, to get residues levels below the MRL values established by the EU. For azinphos methyl in pear, the residues detected were mathematically fitted to an exponential model (r(2)=0.999). According to it, residue levels under the MRL established by the EU (0.05 mg/kg) are gotten in our conditions in 20 daa. In plastic tunnel tomato chlorfenapyr residues were not detected from 16 daa, having the dissipation curve an exponential trend. In the same condition, there was not a decay of the azoxystrobin concentration during a 24-day trial, being it around 0.40 ± 0.05 mg/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号