首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16755篇
  免费   214篇
  国内免费   148篇
安全科学   482篇
废物处理   629篇
环保管理   2368篇
综合类   3177篇
基础理论   4170篇
环境理论   13篇
污染及防治   4117篇
评价与监测   1037篇
社会与环境   988篇
灾害及防治   136篇
  2022年   127篇
  2021年   136篇
  2020年   121篇
  2019年   146篇
  2018年   212篇
  2017年   255篇
  2016年   359篇
  2015年   296篇
  2014年   401篇
  2013年   1457篇
  2012年   500篇
  2011年   668篇
  2010年   540篇
  2009年   594篇
  2008年   668篇
  2007年   712篇
  2006年   661篇
  2005年   534篇
  2004年   513篇
  2003年   529篇
  2002年   469篇
  2001年   555篇
  2000年   443篇
  1999年   252篇
  1998年   204篇
  1997年   197篇
  1996年   217篇
  1995年   229篇
  1994年   223篇
  1993年   211篇
  1992年   229篇
  1991年   211篇
  1990年   209篇
  1989年   179篇
  1988年   159篇
  1987年   139篇
  1986年   163篇
  1985年   165篇
  1984年   171篇
  1983年   169篇
  1982年   164篇
  1981年   170篇
  1980年   159篇
  1979年   151篇
  1978年   111篇
  1977年   125篇
  1974年   113篇
  1973年   91篇
  1972年   108篇
  1971年   89篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
931.
Cyclic volatile methyl siloxanes (cVMS) are high volume production chemicals used in a wide range of industrial and consumer products. Three cVMS compounds (D4, D5, and D6) have and are undergoing environmental risk evaluations in several countries and have been proposed for legal regulation in Canada. As interest in monitoring concentrations of these chemicals in the environment increase, there is a need to evaluate the analytical procedures for cVMS in biological matrices in order to assess the quality of data produced. The purpose of this study was to determine laboratory testing performance for measuring residues of D4, D5, and D6 in a standard set of fish homogenate samples and to estimate limits of determination for each substance. The samples sent to each laboratory consisted of homogenized whole body tissues of hatchery raised rainbow trout which were fed food fortified with D4, D5, and D6 (dosed) and trout that were fed standard food rations (control). The participants analyzed each sample using their analytical method of choice using their own standards and procedures for quantification and quality control. With a few exceptions, participating laboratories generated comparable results for D4, D5, and D6 in both the dosed and control samples having z-scores between 2 and −2. Method detection limits for the whole fish matrix were on average 2.4 ng g−1 ww for D4, 2.3 ng g−1 ww for D5, and 1.8 ng g−1 ww for D6.  相似文献   
932.
This study examined the tissues distribution of selected serotonin reuptake inhibitors (SSRIs) in brook trout exposed for 3 months to continuous flow-through primary-treated effluent before and after ozone treatment. A reliable analytical method was developed for the quantification of trace amounts of antidepressants in small tissue homogenate extracts. Levels of six antidepressants and four of their N-desmethyl metabolites were determined using liquid chromatography-tandem mass spectrometry. Significant amounts of the SSRIs were found in fish tissue-in decreasing order: liver>brain>muscle. Sertraline and its metabolite desmethylsertraline were the predominant substances observed in most tissues (0.04-10.3 ng g(-1)). However, less SSRIs (0.08-1.17 ng g(-1)) were bioaccumulated in the ozonated effluent. The early molecular effects of these SSRIs on the Na/K-dependent ATPase pump activity in brain synaptosomes where also investigated in vitro and in fish exposed to the municipal effluents. With respect to their potential biological effects, in vitro exposure to selected SSRIs induced a reduction of the brain Na/K-ATPase activity in synaptosomes in a dose-dependent manner. Results showed that Na/K-ATPase activity was readily inhibited by exposure to municipal effluent before and, to a lesser extent, after ozone treatment. Moreover, the Na/K-ATPase activity was significantly and negatively correlated with brain tissue concentrations of fluoxetine (r=-0.57; p<0.03), desmethylsertraline (r=-0.84; p<0.001), and sertraline (r=-0.82; p<0.001). The present study reveals that SSRIs are readily available in fish, biologically active and corroborates previous findings on the serotonergic properties of municipal effluents to aquatic organisms.  相似文献   
933.
The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day(-1)). Columns were loaded with an inoculated sand and eluted with a medium containing 1mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.  相似文献   
934.
Using canonical correspondence analysis (CCA), relationships were investigated between plant species composition and flooding characteristics, heavy metal contamination and soil properties in a lowland floodplain of the Rhine River. Floodplain elevation and yearly average flooding duration turned out to be more important for explaining variation in plant species composition than soil heavy metal contamination. Nevertheless, plant species richness and diversity showed a significant decrease with the level of contamination. As single heavy metal concentrations seemed mostly too low for causing phytotoxic effects in plants, this trend is possibly explained by additive effects of multiple contaminants or by the concomitant influences of contamination and non-chemical stressors like flooding. These results suggest that impacts of soil contamination on plants in floodplains could be larger than expected from mere soil concentrations. In general, these findings emphasize the relevance of analyzing effects of toxic substances in concert with the effects of other relevant stressors.  相似文献   
935.
BACKGROUND: Epidemiological studies that assess the health effects of long-term exposure to ambient air pollution are used to inform public policy. These studies rely on exposure models that use data collected from pollution monitoring sites to predict exposures at subject locations. Land use regression (LUR) and universal kriging (UK) have been suggested as potential prediction methods. We evaluate these approaches on a dataset including measurements from three seasons in Los Angeles, CA. METHODS: The measurements of gaseous oxides of nitrogen (NOx) used in this study are from a "snapshot" sampling campaign that is part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). The measurements in Los Angeles were collected during three two-week periods in the summer, autumn, and winter, each with about 150 sites. The design included clusters of monitors on either side of busy roads to capture near-field gradients of traffic-related pollution. LUR and UK prediction models were created using geographic information system (GIS)-based covariates. Selection of covariates was based on 10-fold cross-validated (CV) R(2) and root mean square error (RMSE). Since UK requires specialized software, a computationally simpler two-step procedure was also employed to approximate fitting the UK model using readily available regression and GIS software. RESULTS: UK models consistently performed as well as or better than the analogous LUR models. The best CV R(2) values for season-specific UK models predicting log(NOx) were 0.75, 0.72, and 0.74 (CV RMSE 0.20, 0.17, and 0.15) for summer, autumn, and winter, respectively. The best CV R(2) values for season-specific LUR models predicting log(NOx) were 0.74, 0.60, and 0.67 (CV RMSE 0.20, 0.20, and 0.17). The two-stage approximation to UK also performed better than LUR and nearly as well as the full UK model with CV R(2) values 0.75, 0.70, and 0.70 (CV RMSE 0.20, 0.17, and 0.17) for summer, autumn, and winter, respectively. CONCLUSION: High quality LUR and UK prediction models for NOx in Los Angeles were developed for the three seasons based on data collected for MESA Air. In our study, UK consistently outperformed LUR. Similarly, the 2-step approach was more effective than the LUR models, with performance equal to or slightly worse than UK.  相似文献   
936.
Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).  相似文献   
937.
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.  相似文献   
938.
Tracer gas was released upwind of a two-compartment complex shaped building under unstable atmospheric conditions. The mean wind direction was normal to or at 45° to the long face of the building. The general patterns of concentration distribution on the building external walls and inside the building were analysed and the influence of natural and mechanical ventilation on indoor concentration distributions was discussed. Mean concentration levels, as well as the concentration fluctuation intensity, were higher on the windward walls of the building, although concentration levels varied along each wall. Concentration fluctuations measured inside the building were lower than those measured outside. Inside the two compartments of the building, the time series of concentrations had a similar general behaviour; however, gas concentrations took approximately 1.5 times longer to reach the mean maximum concentration value at the downwind compartment 02 while they also decreased more rapidly in the upwind compartment 01 after the source was turned off. The highest indoor concentration and concentration fluctuation values were observed at the detectors located close to the windward walls, especially when the building windows were open. Experiments with and without natural ventilation suggested that infiltration and exfiltration of contaminants is much faster when the building windows are open, resulting to higher indoor concentration levels. Furthermore, mechanical ventilation tends to homogenize concentrations and suppress concentration fluctuations, leading to lower maximum concentration values.  相似文献   
939.
Atmospheric dust deposition is a major external iron source for remote surface ocean waters. Organic complexation is known to play a role in the dissolution of iron-containing minerals. In this paper, we present our study on the effect of oxalate on dust iron solubility in simulated rainwater. Our results reveal that the solubility of iron carried by analogs of different African dusts varies with the dust source. Our experiments indicate a positive linear correlation between iron solubility and oxalate concentration. Soluble iron (SFe) increases from 0.0025(±0.0005)% to 0.26(±0.01)% of total iron, considering all dust sources and with oxalate concentrations ranging from 0 to 8 μM. These results show that the observed variability of iron solubility in aerosols collected over the Atlantic Ocean is, at least partly, due to an increase in dust iron solubility, with the presence of oxalate complexation, rather than to the presence of more soluble anthropogenic iron. Considering the mineralogical composition of those particles, experiments with pure minerals (hematite, goethite and illite) were performed to study the dissolution process. We found that oxalate promotes the solubility of iron contained in clay and hence confirmed that more than 95% of SFe from soil dust is provided by clay (illite). This experimental work enables us to establish a parameterization of iron solubility in dust as a function of oxalate concentration and based on the individual iron solubility of pure iron-bearing minerals usually present in dust particles. Finally, our results emphasize that oxalate contributes to iron solubility on the same order of magnitude as the acid processes. Organic complexation appears to be a process that increases iron solubility and likely enhances the bioavailability of iron from dust.  相似文献   
940.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号