Regional Environmental Change - Research that projects biophysical changes under climate change is more advanced than research that projects socio-economic changes. There is a need in adaptation... 相似文献
Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.
ABSTRACTCitizens’ attitudes toward science are related to their use of science-related information from various sources. Evidence is scarce regarding citizens’ individual media repertoires for staying informed about science as segmentation studies so far have primarily focused on scientific attitudes. In this paper, we explore audience segments regarding their science-related information behavior and whether such segments are comparable or vary between two countries with similar information environments. Based on two surveys in Switzerland and Germany, we identify national audience segments that differ in their science-related information repertoires, and analyze their sociodemographic characteristics and science-related attitudes. In both countries, we find very comparable information user segments ranging from those who inform themselves frequently about science (“Active Seekers”/“Science Consumers”) to those who hardly get in contact with any information about science and research (“Non-Users”). Those segments which get in contact with information about science frequently show generally more positive attitudes. 相似文献
The objective of this paper is to discuss the main barriers for modelling and integrating the environmental performances in the automotive concept design. Incorporating environmental assessment in the early design phase of a vehicle component is known as an important challenge that car makers need to face in order to develop more sustainable design solutions; in this regard, the Life Cycle Assessment is the most widespread methodology for the environmental assessment and comparison of alternatives. The present work illustrates the combination of such methodology with the traditional design procedure at two different levels of the component design phase, material choice and concept design. In particular, the potential benefits originated by a lightweight solution for the automotive component Throttle Body are evaluated by considering environmental and technical implications at the same level. The case study shows that a multi-disciplinary approach for design effectively allows the integration of the environmental issue in the company’s established procedures. However, interpretation of results is still a challenging aspect due to the inevitable contradicting elements which should not discourage to develop comprehensive sustainability assessment within the early design stage. 相似文献
Due to the high rates of energy consumption and its impact on environment over the last decades, policy decision-makers are increasingly recognising the need to take actions that allow to address problems associated with the deployment of non-renewable resources and climate changes. One field of action has been the promotion of measures that contribute to improve energy efficiency of countries. The purpose of this study is to identify the main factors explaining changes in energy efficiency applying the multiplicative Log Mean Divisia Index decomposition method for a set of countries (Portugal, UK, Brazil and China) with different socio-economic background and energy mix. The results show that overall energy efficiency trends display different patterns between countries and the same happens within each country from a sectoral perspective. Major drivers of improvements of overall energy efficiency were the intensity effect and the affluence effect, whereas the driver that hampered those improvements was the energy consumption per capita. Some policy implications derived from the results achieved are: policy decision-makers should support measures that promote the adoption of energy-saving technologies resulting from new technological developments; policy measures should be directed to raise awareness of end-users regarding energy efficiency and energy conservation efforts; policy measures promoting economic growth through the development (or expansion) of sectors of activity that consume less energy can also be implemented; finally, policy instruments may also be used to reduce the costs of implementing energy efficiency and energy-saving measures to households and firms. 相似文献
A modelling study with the on-line coupled Eulerian chemical-weather model WRF/Chem for the Southern Italian region around Cosenza (Calabria) was conducted to identify the influences of synoptic scale meteorology, local scale wind systems and local emissions on ozone concentrations in this orographically complex region. Four periods of 5–7 days were chosen, one from each season, which had wind pattern characteristics representative of typical local climatological conditions, in order to study the local versus non-local impacts on ozone transport and formation. To account for the complex terrain, the horizontal resolution of the smallest modelling domain was 3 km. Model results were compared with measurements to demonstrate the capability of the model to reproduce ozone concentrations in the region. The comparison was favourable with a mean bias of ?1.1 ppb. The importance of local emissions on ozone formation and destruction was identified with the use of three different emission scenarios. Generally the influence of regional emissions on the average ozone concentration was small. However during periods when mountain-sea wind systems were well developed and synoptic scale winds were weak, the influence of local emissions from the urban area was at its greatest. The maximum influence of local emissions on ozone concentrations was 18 ppb. 相似文献
Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and the carbon cycle. Isoprene is quantitatively the most important of the non-methane BVOCs (NMBVOCs), with an annual emission of about 400–600 TgC; about 90% of this is emitted by terrestrial plants. Incorporating a mechanistic treatment of isoprene emissions within land-surface schemes has recently become a focus for the modelling community, the aim being to quantify the potential magnitude of associated climate feedbacks. However, these efforts are hampered by major uncertainties about why plants emit isoprene and the relative importance of different environmental controls on isoprene emission. The availability and reliability of observations of isoprene fluxes from different types of vegetation is limited, and this also imposes constraints on model development. Nevertheless, progress is being made towards the development of mechanistic models of isoprene emission which, in conjunction with atmospheric chemistry models, will ultimately allow improved quantification of the feedbacks between the terrestrial biosphere and climate under past and future climate states. 相似文献
Recent experiments have shown that dry and fresh leaves, other plant matter, as well as several structural plant components, emit methane upon irradiation with UV light. Here we present the source isotope signatures of the methane emitted from a range of dry natural plant leaves and structural compounds. UV-induced methane from organic matter is strongly depleted in both 13C and D compared to the bulk biomass. The isotopic content of plant methoxyl groups, which have been identified as important precursors of aerobic methane formation in plants, falls roughly halfway between the bulk and CH4 isotopic composition. C3 and C4/CAM plants show the well-established isotope difference in bulk 13C content. Our results show that they also emit CH4 with different δ13C value. Furthermore, δ13C of methoxyl groups in the plant material, and ester methoxyl groups only, show a similar difference between C3 and C4/CAM plants. The correlation between the δ13C of emitted CH4 and methoxyl groups implies that methoxyl groups are not the only source substrate of CH4.Interestingly, δD values of the emitted CH4 are also found to be different for C3 and C4 plants, although there is no significant difference in the bulk material. Bulk δD analyses may be compromised by a large reservoir of exchangeable hydrogen, but no significant δD difference is found either for the methoxyl groups, which do not contain exchangeable hydrogen. The δD difference in CH4 between C3 and C4 plants indicates that at least two different reservoirs are involved in CH4 emission. One of them is the OCH3 group, the other one must be significantly depleted, and contribute more to the emissions of C3 plants compared to C4 plants. In qualitative agreement with this hypothesis, CH4 emission rates are higher for C3 plants than for C4 plants. 相似文献
The cost effectiveness of catchment-wide funding for the environmental remediation of urban waterways on the scale of a major metropolitan catchment is examined considering the typical land-use and pollutant-export characteristics of urban catchments. The evaluation is performed by comparing the effectiveness of the major stormwater treatment modes for the pollutants of concern with the proportion of pollutant export to which the measure applies. The heavy metals copper, lead, and zinc in the aqueous phase or bound to fine particulates are identified as representative of the pollutants of concern in drainage from urban catchments. The analysis suggests that these priority pollutants are predominantly (79–87%) derived from runoff from residential property and roads as disseminated urban surfaces. Analysis of a specific case of catchment-wide funding of stormwater remediation in the Sydney Harbour catchment, Australia reveals that the funding allocation cannot be expected to have achieved reductions in the loads of priority pollutants due to the types of treatment measures implemented and the sources addressed. The apportionment of funding in better accordance with the maximum potential effectiveness of stormwater treatment modes and the pollutant-export characteristics of urban catchments could thus be expected to achieve a more cost-effective result from such funding initiatives. 相似文献
Predictive population models designed to assist managers and policy makers require an explicit treatment of inherent uncertainty and variability. These are particular concerns when modelling non-native and reintroduced species, when data have been collected within one geographical or ecological context but predictions are required for another, or when extending models to predict the consequences of environmental change (e.g., climate or land-use). We present an aspatial, probabilistic framework of hierarchical process models for predicting population growth even when data are sparse or of poor quality. Insight into the factors affecting population dynamics in real landscapes can be provided and Kullback–Leibler distances are used to compare the relative output of models. This flexible yet robust framework gives easily interpretable results, allowing managers as well as modellers to invalidate anomalous models and apply others to real-life scenarios.We illustrate the framework’s power with a meta-analysis of European wild boar (Sus scrofa) data. We test hypotheses about the effect of geographic region, hunting and mast years on wild boar population growth, to build models of wild boar dynamics for the UK. The framework quantifies the importance of hunting pressure as a driver of population growth, and confirms that reproductive success is greatly decreased in poor mast years, suggesting that the key to predicting wild boar dynamics is to ascertain local hunting pressure and to better understand changing food availability. Geography had no significant effect, indicating that it is not a good proxy for modelling the impact of change in climate or land-use on wild boar populations at the European scale. We use the framework to predict population abundance 9 years after an isolated population of wild boar established in the UK; in a comparison with the only field data and two independent modelling exercises, our framework provides the most robust and informative results. 相似文献