首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6284篇
  免费   44篇
  国内免费   33篇
安全科学   141篇
废物处理   278篇
环保管理   515篇
综合类   1013篇
基础理论   1552篇
环境理论   6篇
污染及防治   2000篇
评价与监测   466篇
社会与环境   370篇
灾害及防治   20篇
  2024年   36篇
  2023年   81篇
  2022年   157篇
  2021年   179篇
  2020年   95篇
  2019年   114篇
  2018年   255篇
  2017年   267篇
  2016年   332篇
  2015年   224篇
  2014年   327篇
  2013年   473篇
  2012年   350篇
  2011年   410篇
  2010年   266篇
  2009年   242篇
  2008年   370篇
  2007年   338篇
  2006年   280篇
  2005年   219篇
  2004年   206篇
  2003年   165篇
  2002年   138篇
  2001年   94篇
  2000年   52篇
  1999年   51篇
  1998年   28篇
  1997年   26篇
  1996年   26篇
  1995年   35篇
  1994年   32篇
  1993年   16篇
  1992年   23篇
  1991年   23篇
  1990年   22篇
  1989年   19篇
  1988年   18篇
  1987年   12篇
  1986年   25篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1982年   20篇
  1980年   13篇
  1976年   11篇
  1966年   19篇
  1965年   12篇
  1964年   11篇
  1956年   11篇
  1954年   11篇
排序方式: 共有6361条查询结果,搜索用时 15 毫秒
761.
A chronic dietary risk assessment for pesticide residues was conducted for four age groups of the Argentinian population following the procedure recommended by the WHO. The National Theoretical Maximum Daily Intake (NTMDI) for 308 pesticides was calculated for the first time, using the Maximum Residue Limits (MRLs) from several Argentinean regulations and food consumption data from a comprehensive National Nutrition and Health Survey. The risk was estimated by comparing the TMDI with the Acceptable Daily Intakes (ADI) identified by various sources. Furthermore, for each of the compounds with a TMDI >65% of the ADI, a probabilistic analysis was conducted to quantify the probability of exceeding the ADI. In this study 27, 22, 10, and 6 active ingredients (a.i.) were estimated to exceed the 100% of the ADI for the different population groups: 6–23 month-old children, 2–5 year-old children, pregnant women, and 10–49 year-old women, respectively. Some of these ADI-exceeding compounds (carbofuran, diazinon, dichlorvos, dimethoate, oxydemeton-methyl and methyl bromide) were found in all four of these groups. Milk, apples, potatoes, and tomatoes were the foods that contributed most to the intake of these pesticides. The study is of primary importance for the improvement of risk assessment, regulations, and monitoring activities.  相似文献   
762.
Although fish is a healthy alternative for meat, it can be a vehicle for mercury (Hg), including in its most toxic organic form, methylmercury (MeHg). The objective of the present study was to estimate the risk to human health caused by the consumption of sushi and sashimi as commercialized by Japanese food restaurants in the city of Campinas (SP, Brazil). The total Hg content was determined by atomic absorption spectrometry with thermal decomposition and amalgamation, and the MeHg content calculated considering that 90% of the total Hg is in the organic form. The health risk was estimated from the values for the provisional tolerable weekly ingestion (PTWI) by both adults and children. The mean concentrations for total Hg were: 147.99, 6.13, and 3.42 µg kg?1 in the tuna, kani, and salmon sushi samples, respectively, and 589.09, 85.09, and 11.38 µg kg?1 in the tuna, octopus and salmon sashimi samples, respectively. The tuna samples showed the highest Hg concentrations. One portion of tuna sashimi exceeded the PTWI value for MeHg established for children and adults. The estimate of risk for human health indicated that the level of toxicity depended on the type of fish and size of the portion consumed.  相似文献   
763.
This study was undertaken to evaluate the effectiveness of several household practices (washing with water or acidic, alkaline, and oxidizing solutions, and peeling) in minimizing pesticide residue contamination of tomatoes, as well as the impact on the quality of the treated fruit. Tests were performed using two systemic fungicides (azoxystrobin and difenoconazole) and one contact fungicide (chlorothalonil). Solid-liquid extraction with low temperature partition (SLE/LTP) and liquid-liquid extraction with low temperature partition (LLE/LTP) were used to prepare the samples for pesticides determination by gas chromatography. Washing the tomatoes with water removed approximately 44% of chlorothalonil, 26% of difenoconazole, and 17% of azoxystrobin. Sodium bicarbonate (5%) and acetic acid (5%) solutions were more efficient, removing between 32 and 83% of the residues, while peeling removed from 68 to 88% of the pesticides. The washing solutions altered some fruit quality parameters, including acidity and chroma, and also caused weight loss. Acetic acid (0.15 and 5%) and hypochlorite (1%) solutions had the greatest effect on these parameters.  相似文献   
764.
Membrane fouling is a major concern for the optimization of membrane bioreactor (MBR) technologies. Numerous studies have been led in the field of membrane fouling control in order to assess with precision the fouling mechanisms which affect membrane resistance to filtration, such as the wastewater characteristics, the mixed liquor constituents, or the operational conditions, for example. Worldwide applications of MBRs in wastewater treatment plants treating all kinds of influents require new methods to predict membrane fouling and thus optimize operating MBRs. That is why new models capable of simulating membrane fouling phenomenon were progressively developed, using mainly a mathematical or numerical approach. Faced with the limits of such models, artificial neural networks (ANNs) were progressively considered to predict membrane fouling in MBRs and showed great potential. This review summarizes fouling control methods used in MBRs and models built in order to predict membrane fouling. A critical study of the application of ANNs in the prediction of membrane fouling in MBRs was carried out with the aim of presenting the bottlenecks associated with this method and the possibilities for further investigation on the subject.  相似文献   
765.
Heavy metal contamination is a long-standing and very well-known public health problem, and its exposure can cause damage to several organs of human body, especially on the central nervous system of young children and teenagers. The aim of this article is to evaluate lead, cadmium, and manganese contamination in 125 children from 6 to 13 years old living in contaminated areas during the period from 2006 to 2009 (São Vicente, Cubatão Downtown, Bertioga and Cubatão Pilões/Água Fria). This estuary area is the most important example of environmental degradation by chemicals from industrial sources. This is a cross-sectional study through clinical examinations and dental enamel tests. All mothers from these children lived in the area since before the pregnancy. Lead, cadmium, and manganese levels (μg/g) were measured on dental enamel samples through graphite furnace atomic absorption spectrometry, searching for the occurrence of heavy metals. The mean lead concentrations were 139.48 μg/g in Cubatão Pilões/Água Fria, 170.45 μg/g in Cubatão Downtown, 213.52 μg/g in São Vicente, and 151.89 μg/g in Bertioga. The mean cadmium concentrations were 10.83 μg/g in Cubatão Pilões/Água Fria, 12.58 μg/g in Cubatão Downtown, 10.92 μg/g in São Vicente, and 14.57 μg/g in Bertioga. The mean manganese concentrations were 23.49 μg/g in Cubatão Pilões/Água Fria, 30.90 μg/g in Cubatão Downtown, 41.46 μg/g in São Vicente, and 42.00 μg/g in Bertioga. Dental surface enamel may be used as an efficient biomarker of past environmental exposure to lead, manganese, and cadmium which are associated to well-known sources of heavy metal contamination. The results suggest that the evaluated children were exposed to sources of lead, cadmium, and manganese since before their conceptions. Although Bertioga initially was chosen as a control area of this study, it was also was verified to have heavy metal contamination on examined children.  相似文献   
766.
Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD5) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors—and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.  相似文献   
767.
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.  相似文献   
768.
Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min).
Graphical abstract TCC degradation and ecotoxicological assessment
  相似文献   
769.
In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM2.5–0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.  相似文献   
770.
Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号