首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   18篇
  国内免费   7篇
安全科学   34篇
废物处理   32篇
环保管理   173篇
综合类   111篇
基础理论   283篇
环境理论   1篇
污染及防治   243篇
评价与监测   68篇
社会与环境   42篇
灾害及防治   6篇
  2023年   27篇
  2022年   32篇
  2021年   13篇
  2020年   12篇
  2019年   28篇
  2018年   22篇
  2017年   32篇
  2016年   39篇
  2015年   24篇
  2014年   42篇
  2013年   77篇
  2012年   35篇
  2011年   81篇
  2010年   52篇
  2009年   42篇
  2008年   46篇
  2007年   55篇
  2006年   59篇
  2005年   32篇
  2004年   32篇
  2003年   35篇
  2002年   33篇
  2001年   19篇
  2000年   6篇
  1999年   3篇
  1998年   11篇
  1997年   14篇
  1996年   15篇
  1995年   5篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
  1941年   1篇
  1936年   1篇
排序方式: 共有993条查询结果,搜索用时 62 毫秒
201.
Environmental Chemistry Letters - Climate change is predicted to cause severe loss in agricultural production by increasing disease epidemics and intensifying abiotic stresses. Therefore,...  相似文献   
202.
Environmental Science and Pollution Research - Freshwater contamination by pesticides in agricultural landscapes is of increasing concern worldwide, with strong pesticide impacts on biodiversity,...  相似文献   
203.
Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.  相似文献   
204.
Phenology: response, driver, and integrator.   总被引:1,自引:0,他引:1  
  相似文献   
205.
Post DM  Palkovacs EP  Schielke EG  Dodson SI 《Ecology》2008,89(7):2019-2032
Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.  相似文献   
206.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   
207.
A multi-agent simulation (MAS) was developed to assess the risk of malaria re-emergence in the Camargue in southern France, a non-endemic area where mosquitoes of the genus Anopheles (Culicidae) live. The contact rate between people and potential malaria vectors, or the human biting rate, is one of the key factor to predict the risk of re-emergence of malaria, would the parasite be introduced in the region. Our model (called MALCAM) represents the different agents that could influence malaria transmission in the Camargue – people, mosquitoes, animal hosts and the landscape – in a spatially explicit environment. The model simulates spatial and temporal variations in human biting rate at the landscape scale. These variations depend on the distribution of people and potential vectors, their behaviour and their interactions. A land use/cover map was used as a cellular-spatial support for the movements of and interactions between mobile agents. The model was tested for its sensitivity to variations in parameter values, and for the agreement between field observations and model predictions. The MALCAM model provides a tool to better understand the interactions between the multiple agents of the disease transmission system, and the land use and land cover factors that control the spatial heterogeneity in these interactions. It allows testing hypotheses and scenarios related to disease dynamics by varying the value of exogenous biological, geographical, or human factors. This application of agent-based modelling to a human vector-borne disease can be adapted to different diseases and regions.  相似文献   
208.
香港汀角红树植物、沉积物及双壳类动物重金属含量   总被引:14,自引:0,他引:14  
汀角有香港面积最大的硬底质红树林,作者调查了该红树林区沉积物、红树植物以及双壳类动物体内重金属(Cu、Pb、Zn和Ni)的含量.总体看,沉积物中重金属含量与其他地点相比较低,红树植物根际沉积物中重金属含量高于光滩.红树植物组织内重金属含量较低,体内Pb、Zn的含量均低于根际沉积物,但对Cu、Ni有一定的富集,Cu可在根部和叶内富集,而Ni只在根部富集,并束缚于此.双壳类动物对4种重金属的吸收存在较大差异,Zn、Cu的富集明显高于Pb和Ni的富集程度.5种动物中又以岩蠔最高,体内的Zn、Cu分别达到3913, 378mg/g.从重金属含量看,作为食用动物有一定的风险.  相似文献   
209.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   
210.
Abstract: For over 10 years, several species of salmon have been identified as either threatened or endangered in the Snake River Basin of Idaho. The United States Bureau of Reclamation, in cooperation with the National Marine Fisheries Service, has proposed a variety of plans to increase stream flows in the Snake River Basin to facilitate movement by juvenile salmon smolts to the ocean. This research examines two of the flow augmentation plans proposed by the Bureau of Reclamation as well as two alternative plans, one founded purely on existing priority‐based water rights and another geared toward minimizing the effects of flow augmentations on farms profitability. Results from a basin‐wide model of agricultural production in the Snake River Basin, the Snake River Agricultural Model, present evidence that (1) older water rights are used towards production of less valuable crops, (2) flow augmentation scenarios have unequal effects on farms profitability across agricultural regions within the basin, and (3) irrigation water is valued from US$4 to US$59 an acre‐foot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号