首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1156篇
  免费   24篇
  国内免费   24篇
安全科学   51篇
废物处理   34篇
环保管理   184篇
综合类   161篇
基础理论   298篇
环境理论   1篇
污染及防治   329篇
评价与监测   87篇
社会与环境   50篇
灾害及防治   9篇
  2023年   31篇
  2022年   38篇
  2021年   15篇
  2020年   14篇
  2019年   30篇
  2018年   24篇
  2017年   35篇
  2016年   47篇
  2015年   27篇
  2014年   47篇
  2013年   87篇
  2012年   42篇
  2011年   97篇
  2010年   64篇
  2009年   49篇
  2008年   54篇
  2007年   65篇
  2006年   79篇
  2005年   43篇
  2004年   49篇
  2003年   43篇
  2002年   47篇
  2001年   27篇
  2000年   12篇
  1999年   10篇
  1998年   13篇
  1997年   14篇
  1996年   16篇
  1995年   5篇
  1994年   10篇
  1993年   5篇
  1992年   13篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1965年   1篇
  1941年   1篇
  1936年   1篇
排序方式: 共有1204条查询结果,搜索用时 31 毫秒
41.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
42.
The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.  相似文献   
43.
The potential for nanoscale phosphate amendments to remediate heavy metal contamination has been widely investigated, but the strong tendency of nanoparticles to form aggregates limits the application of this technique in soil. This study synthesized a composite of biochar-supported iron phosphate nanoparticle (BC@Fe3(PO4)2) stabilized by a sodium carboxymethyl cellulose to improve the stability and mobility of the amendment in soil. The sedimentation test and column test demonstrated that BC@Fe3(PO4)2 exhibited better stability and mobility than iron phosphate nanoparticles. After 28 days of simulated in situ remediation, the immobilization efficiency of Cd was 60.2 %, and the physiological-based extraction test bioaccessibility was reduced by 53.9 %. The results of sequential extraction procedures indicated that the transformation from exchangeable (EX) Cd to organic matter (OM) and residue (RS) was responsible for the decrease in Cd leachability in soil. Accordingly, the pot test indicated that Cd uptake by cabbage mustard was suppressed by 86.8 %. Compared to tests using iron phosphate nanoparticles, the addition of BC@Fe3(PO4)2 to soil could reduce the Fe uptake of cabbage mustard. Overall, this study revealed that BC@Fe3(PO4)2 could provide effective in situ remediation of Cd in soil.  相似文献   
44.
With globalization, virtual exchanges of natural resources embodied in traded commodities redistribute geographically land use and its environmental impacts. Benefits of national forest protection may be undermined at the global-scale by leakage through international trade. We studied land use displacement associated with national policies to protect forests in Bhutan. This case study provides a simple situation: a dominant forest cover almost unaffected by agricultural expansion, a rural economy dominated by the primary sector, centralized forest conservation policies, and a dominant trading partner. We assessed the net effects at the international level of the Bhutanese forest protection policies by accounting for trade in wood products with India. Our results show that these policies have been effective in maintaining a high forest cover, but have been accompanied by an increasing displacement of forest use to India. In 1996–2011, the difference between the total volume of wood imported from India and the total volume exported from Bhutan—i.e., the net displacement—corresponds to 27 % of the total volume consumed in Bhutan. In 2011, 68 % of the total forest area required to produce the wood consumed in Bhutan was located in India. The wood imported by Bhutan was likely originating from tree plantations in the northeastern Indian states. Since Bhutan has few tree plantations and very valuable natural forests, the net international-level ecological impacts of this land use displacement is arguably positive. Most of the wood imports of Bhutan were wood charcoal for its emerging chemical industries. This case of displacement reflects functional upgrading in the value-chain rather than an externalization of consumption-based environmental costs. Through its government policies, Bhutan has managed to support its economic development while protecting its forests and leapfrogging the negative impacts on forests generally associated with the early stages of modernization.  相似文献   
45.
This article reports the computational and experimental results of the thermal decomposition of permethrin, a potential source of dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). We have performed a quantum chemical analysis by applying density functional theory to obtain the decomposition pathways of permethrin and the formation mechanism of dibenzofuran. We have conducted the pyrolysis experiments in a tubular reactor and identified the pyrolysis products to demonstrate the agreement between the experimental measurements and quantum chemical calculations. The initiation of the decomposition of permethrin involves principally the aromatisation of permethrin into 3-phenoxyphenylacetic acid, 2-methylphenyl ester (J) and concomitant loss of 2HCl. This rearrangement is followed by the rupture of the O–CH2 linkage in J, with a rate constant derived from the quantum chemical results of 1 × 1015 exp(−68 kcal/mol/RT) s−1 for temperatures between 700 and 1300 K. This is confirmed by finding that the rate constant for unimolecular rearrangement of permethrin into J is 1.2 × 1012 exp(−53 kcal/mol/RT) s−1 over the same range of temperatures and exceeds the direct fission rate constant at all temperatures up to 850 ± 120 °C as well as by the experimental detection of J prior to the detection of the initial products incorporating diphenyl ether, 1-methyl-3-phenoxybenzene, 3-phenoxybenzaldehyde and 1-chloromethyl-3-phenoxybenzene. As the temperature increases, we observe a rise in secondary products formed directly or indirectly (via phenol/phenoxy) including aromatics (naphthalene), biphenyls (biphenyl, 4-methyl-1,1′-biphenyl) and dibenzofuran (DF). In particular, we discover by means of quantum chemistry a direct route from 2-phenoxyphenoxy to naphthalene. We detect no polychlorinated dibenzo-p-dioxins and dibenzofurans. Unlike the case of oxidative pyrolysis [Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., 2007b. Formation of dioxins in fires of arsenic-free treated wood: Role of organic preservatives. Environ. Sci. Technol. 41, 6425–6432] where significant yields of both PCDD and PCDF were obtained, under non-oxidative conditions the thermal decomposition of permethrin does not form appreciable amounts of PCDD or PCDF and the presence of oxygen (and/or a sizable radical pool) appears necessary for the formation of dibenzo-p-dioxin itself or PCDD/F from phenol/phenoxy.  相似文献   
46.
47.
Chitosan (a biopolymer) is an aminopolysaccharide that can be used for the treatment of colored solutions by coagulation–flocculation (as an alternative to more conventional processes such as sorption). Acid Blue 92 (a sulfonic dye) was selected as a model dye for verifying chitosan's ability to treat textile wastewater. A preliminary experiment demonstrated that chitosan was more efficient at color removal in tap water than in demineralized water, and that a substantially lower concentration of chitosan could be used with tap water. Dye removal reached up to 99% under optimum concentration; i.e., in terms of the acidic solutions and the stoichiometric ratio between the amine groups of the biopolymer and the sulfonic groups in the dye. The flocs were recovered and the dye was efficiently removed using alkaline solutions (0.001–1 M NaOH solutions) and the biopolymer, re-dissolved in acetic acid solution, was reused in a further treatment cycle.  相似文献   
48.
Riparian buffer restorations are used as management tools to produce favorable water quality impacts, moreover among the many benefits riparian buffers may provide, their application as instruments for water quality restoration rests on a relatively firm foundation of research. However, the extent to which buffers can restore riparian ecosystems; their functionality and species composition, are essentially unknown. In light of the foregoing, two broad areas of research are indicated. First, data are needed to document the relative effectiveness of riparian buffers that differ according to width, length, and plant species composition. These questions, of managing buffer dimension and species composition for functionality, are of central importance even when attenuation of nutrient and sediment loads alone are considered. Second, where ecosystem restoration is the goal, effects to in-stream and terrestrial riparian biota need to be considered. Relatedly, the effects of the restoration on the landscape need to be considered. Particularly, at what rate do the effects of the riparian buffer on in-stream water quality, biota, and habitat diminish downstream from restored sites? Answers to these important questions are needed, for streams and watersheds of different size and for areas of differing soil type within watersheds. U.S. EPA-NRMRL has initiated as research project that will document the potential for buffers to restore riparian ecosystems; focusing on water quality effects, but also, importantly, documenting effects on biota. While substantial riparian buffer management initiatives are already underway, the extent of landscapes that influence riparian ecosystems in the eastern United States is large; leaving ample opportunity for this suggested research to provide improved buffer designs in the future. The ultimate goal of research projects developed under this paradigm of ecosystem restoration is to develop data that are needed to implement riparian buffer restorations in the mid-Atlantic and elsewhere, especially the eastern United States.  相似文献   
49.
Assessments of long-term relationships between changes innutrient inputs and wetland nutrient concentrations can becomplicated by fluctuations in other environmental factors aswell as by problems typical of long-term monitoring data.Consequently, statistical analysisof these types of data sets requirescareful consideration of environmental covariates, potentialbiases in the monitoring design, and irregularities caused bychanges in field sampling protocols. We evaluated therelationship between anthropogenic phosphorus (P) inputs andwater-column total P (TP) concentrations in a northernEverglades marsh by statistically analyzing available datacollected from several sampling programs over the past 20 years(1978–1997). Canal inputs of agricultural runoff contributemost of the P to the marsh and have produced a zone ofenrichment within the marsh during the past few decades.Regression analyses showed that both canal and marsh TPconcentrations increased during the 1980s and then decreased inthe 1990s. However, the statistical relationship between canal Pinputs and marsh TP, while significant, generally was weakexcept for marsh locations adjacent to the canal. Strongerrelationships existed between marsh TP and hydrologic parameterssuch as marsh water depth, which is controlled by changes inweather patterns and marsh management. In particular, dryconditions during the 1980s may have contributed to observedincreases in marsh P concentrations and the movement of a P`front' further into the marsh. Higher rainfall and water depthsand agricultural best management programs initiated during the1990s have been associated with reduced P concentrations incanal waters entering the marsh. While it is anticipated thatthis reduction eventually will result in lower marsh TPconcentrations, this effect is not yet evident, possibly due tointernal loading of P from enriched marsh soils. Our findingsillustrate some of the environmental factors that can complicateattempts to develop empirical relationships between P inputs andwetland P concentrations and to use such relationships to forecast changesin marsh concentrations based on past monitoring data alone.  相似文献   
50.
The Clean Water Act (CWA) has regulated discharges of contaminants since 1972. However, evaluations of the CWA's effectiveness at improving regional water quality are lacking, primarily because integration of monitoring data from multiple dischargers to assess cumulative effects is not required. A rare opportunity exists to assess CWA effectiveness by integrating mass emissions data from all major sources of contaminants to the Southern California Bight from 1971 to 2000. While the coastal population grew by 56% and total effluent volume increased 31% since 1971, mass emissions of nearly all constituents decreased since passage of the CWA, most by greater than 65%. Publicly owned treatment works were the dominant point source of many contaminants, but also accounted for the greatest reductions in pollutant discharge since 1971. As point source treatment has improved, the relative contribution of non-point sources, such as storm water runoff has increased. Despite the increased importance of storm water discharges, regional monitoring and data compilation of this source is lacking, making it difficult to accurately assess trends in non-point source discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号