首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   3篇
废物处理   5篇
环保管理   14篇
综合类   20篇
基础理论   16篇
环境理论   1篇
污染及防治   48篇
评价与监测   9篇
社会与环境   5篇
灾害及防治   1篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   11篇
  2014年   6篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   9篇
  2008年   14篇
  2007年   6篇
  2006年   7篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1995年   2篇
  1991年   3篇
  1967年   1篇
  1959年   1篇
  1957年   1篇
  1955年   1篇
  1929年   1篇
排序方式: 共有119条查询结果,搜索用时 46 毫秒
91.
Environmental Science and Pollution Research - In the present study, commercial PES, PVDF, PTFE ultrafilter membranes, and two different nanomaterial (TiO2 and TiO2/CNT composite)-covered PVDF...  相似文献   
92.
Tocopilla is located on the coast of Northern Chile, within an arid region that extends from 30 degrees S to the border with Perú. The major industrial activities are related to the copper mining industry. A measurement campaign was conducted during March and April 2006 to determine ambient PM10 and PM(2.5) concentrations in the city. The results showed significantly higher PM10 concentrations in the southern part of the city (117 microg/m3) compared with 79 and 80 (microg/m3) in the central and northern sites. By contrast, ambient PM2.5 concentrations had a more uniform spatial distribution across the city, around 20 (microg/m3). In order to conduct a source apportionment, daily PM10 and PM(2.5) samples were analyzed for elements by XRF. EPA's Positive Matrix Factorization software was used to interpret the results of the chemical compositions. The major source contributing to PM(2.5) at sites 1, 2 and 3, respectively are: (a) sulfates, with approximately 50% of PM2.5 concentrations at the three sites; (b) fugitive emissions from fertilizer storage and handling, with 16%, 21% and 10%; (c) Coal and residual oil combustion, with 15%, 15% and 4%; (d) Sea salt, 5%, 6% and 16%; (e) Copper ore processing, 4%, 5% and 15%; and (f) a mixed dust source with 11%, 7% and 4%. Results for PM10--at sites 1, 2 and 3, respectively--show that the major contributors are: (a) sea salt source with 36%, 32% and 36% of the PM10 concentration; (b) copper processing emissions mixed with airborne soil dust with 6.6%, 11.5% and 41%; (c) sulfates with 31%, 31% and 12%; (d) a mixed dust source with 16%, 12% and 10%, and (e) the fertilizer stockpile emissions, with 11%, 14% and 2% of the PM10 concentration. The high natural background of PM10 implies that major reductions in anthropogenic emissions of PM10 and SO2 would be required to attain ambient air quality standards for PM10; those reductions would curb down ambient PM(2.5) concentrations as well.  相似文献   
93.
Carbon monoxide concentrations were measured at ground level (1 m) near heavy traffic streets in downtown Santiago de Chile in periods of low (November and December), intermediate (April) and high (May) ambient concentrations. Also, measurements were carried out at several heights (from 1 to 127 m) in Santiago’s main street during winter time. Measurements carried out at ground level show maximum values during the morning rush hour, with values considerably higher than those reported by the urban air quality network, particularly in summer time. However, the measured values are below air quality standards. Vertical CO profiles were measured in a tower located in the center of downtown. Below 40 m (average altitude of neighboring buildings), the profiles do not show a consistent vertical gradient, with CO concentrations increasing or decreasing with height, regardless of atmospheric stability. In this low altitude range, the observed vertical profiles are poorly predicted by a street canyon model, and the measured concentrations can not be described by a simple exponential decay. At higher altitudes (40 and 127 m) a negative gradient in CO concentrations is observed, both for stable and unstable atmospheric conditions. The values of CO measured at 127 m are relatively well described by an Eulerian dispersion model running with current CO emission inventories for Santiago, although this model tends to predict stepper CO gradients than the observed ones.  相似文献   
94.
Aeration improves the capacity of leachfields to decontaminate and reduce the nutrient load of wastewater. To gain a better understanding of the effects of aeration, we examined the faunal and microbial communities of septic system leachfield soil (0-4 and 4-13 cm) using replicated (n = 3) mesocosms that were actively aerated (AIR) or unaerated (LEACH). Protozoa were 40 to 140 times more abundant in AIR than in LEACH soil. No nematodes were found in LEACH soil, whereas AIR soil contained 5 to 14 x 10(3) nematodes (all bacteriovores) kg(-1). Active microbial biomass was four to five times higher in AIR than LEACH soil. Proteobacteria and actinomycetes/sulfate-reducing bacteria constituted a higher proportion of the community in AIR soil, whereas anaerobic Gram-negative bacteria/firmicutes were more prominent in LEACH soil. Ratios of prokaryotic to eukaryotic phospholipid fatty acids (PLFAs) were higher in LEACH soil, as were membrane stress index values, whereas the starvation index was higher in AIR soil. Community-level physiological profiles showed that 29 and 30 different substrates were used for growth by LEACH and AIR soil microorganisms, respectively. The AIR soil had more microorganisms capable of growing on 10 substrates, whereas growth on two substrates was higher in LEACH soil. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA gene fragments revealed greater diversity of dominant phylotypes in AIR than LEACH soil, with communities separated by treatment. Aerated leachfield soil had a larger and more diverse faunal and microbial community than unaerated soil, possibly due to differences in the type and availability of electron acceptors.  相似文献   
95.
Unlike synthetic metal chelators, microbe-assisted phytoremediation provides plants with natural metal-solubilizing chelators which do not constitute a potential source of environmental pollution. Concurrently with microbial chelators, plant growth promotion can be enhanced through bacterially-produced phytohormones. In this work, the simultaneous production of siderophores and auxins by Streptomyces was studied to gain insight for future application in plant growth and phytoremediation in a metal-contaminated soil. Standard auxin and siderophore detection assays indicated that all of the investigated Streptomyces strains can produce these metabolites simultaneously. However, Al(3+), Cd(2+), Cu(2+), Fe(3+) and Ni(2+), or a combination of Fe(3+) and Cd(2+), and Fe(3+) and Ni(2+) affected auxin production negatively, as revealed by spectrophotometry and gas chromatography-mass spectrometry. This effect was more dramatic in a siderophore-deficient mutant. In contrast, except for Fe, all the metals stimulated siderophore production. Mass spectrometry showed that siderophore and auxin-containing supernatants from a representative Streptomyces species contain three different hydroxamate siderophores, revealing the individual binding responses of these siderophores to Cd(2+) and Ni(2+), and thus, showing their auxin-stimulating effects. We conclude that siderophores promote auxin synthesis in the presence of Al(3+), Cd(2+), Cu(2+) and Ni(2+) by chelating these metals. Chelation makes the metals less able to inhibit the synthesis of auxins, and potentially increases the plant growth-promoting effects of auxins, which in turn enhances the phytoremediation potential of plants.  相似文献   
96.
Background, aim, and scope  Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. Materials and methods  To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100°C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. Results  The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. Discussion  The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. Conclusions  Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. Recommendations and perspectives  It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.  相似文献   
97.
Settleable particulate matter (SPM) is an atmospheric pollutant harmful to human health and the environment in high concentrations. Despite this fact, no up‐to‐date information on SPM levels exists for the capital of Chile, Santiago (7 million inhabitants). To address this knowledge gap, SPM sedimentation rates, including soluble and insoluble components, were measured at three different urban sites from July to November of 2016. We compare the measurements with ambient and meteorological information, as well as urban typology settings. Our results indicate SPM deposition rates between 2.5 and 3.9 g/(m2·30 days). Only one site exceeded the national limit of 4.5 g/(m2·30 days), but we found an increasing trend in all three sites. SPM and its insoluble sedimentation rates increased during warm and dry months and presented significant correlations with meteorological parameters. The highest sedimentation rates were measured at the location with the least permeable surfaces and the lowest green spaces, while the lowest sedimentation rates were found in the sites with abundant green spaces and permeable soil. No significant differences were detected in the soluble components. Our results suggest that SPM levels in Santiago are close to the national limit and may increase with climate change and urban expansion.  相似文献   
98.
Land cover change in protected areas is often associated with human use, especially illicit extraction, but the direction and spatial distribution of such effects and their drivers are poorly understood. We analyze and explain the spatial distribution of vegetation change at the Kumbhalgarh Wildlife Sanctuary in the Aravalli range of Rajasthan, India using remotely sensed data and observation of conservation institutions. Two satellite images are examined in time series over the 13 years following the founding of the sanctuary through a cross-tabulation technique of dominant classes of vegetation density. The resulting change trajectories are compared for their relative distance to high-traffic forest entrance points for local users. The results show 28% of the study area undergoing change, though in multiple trajectories, with both increasing and decreasing density of vegetation in discrete patches. Areas of change are shown to be closer to entrance points than areas experiencing no change. The patchiness of change results from complex issues in local enforcement authority for middle and lower-level officials in Forest Department bureaucracy, leading to further questions about the efficacy and impact of use restrictions in Protected Areas.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号