Zusammenfassung Zur ?kotoxikologischen Beurteilung von belastetem Wasser werden h?ufig einfache Biotests eingesetzt. Nicht selten werden dabei
toxische Effekte festgestellt. Es stellt sich dann die Frage nach den verantwortlichen Wasserinhalts-stoffen. Durch Festphasenextraktion
(SPE) werden diese angereichert, gewonnen und dünnschichtchromatographisch unter Verwendung der automatisierten Mehrfachentwicklung
aufgetrennt. Von der DC-Platte wird ein Streifen abgetrennt und darauf direkt die biologische Detektion mit Mikroorganismen
(Bacillus subtilis, Leuchtbakterien) durchgeführt. Dadurch k?nnen toxische Banden erkannt werden, Auf dem DC-Plattenrest wird von der toxischen
Bande mit einem DC-scanner ein UV-Spektrum aufgenommen, die entsprechende Bande herausgekratzt, der toxische Stoff eluiert
und infrarotspektroskopisch untersucht. Durch Spektrenvergleich gelingt es meistens, den Stoff zu charakterisieren.
In der vorliegenden Arbeit wird am Beispiel eines Zitzengummieluates das Analysenkonzept vorgestelit. Es zeigte sich, dass
dieser Gummiartikel einen Vulkanisationsbeschleuniger (2-Mercaptobenzothiazol) freisetzt.
Online-Publikation am: 21.12.1999 相似文献
Zusammenfassung Ein quecksilberkontaminierter Altstandort dient als Beispiel für eine umweltmedizinische Beurteilung der Belastung der im
Umfeld wohnenden Personen durch Quecksilberimmissionen. Dabei wird die innere Exposition für sieben verschiedene Altersgruppen
bezüglich der KontaktmedienBoden, Luft undNahrungsmittel anhand von konventionell festgelegten Szenarien abgesch?tzt und ein Vergleich mit den epidemiologischen Ergebnissen eines
Humanmonitorings angestrebt. Die standortspezifisch und pfadspezifisch durchgeführte Expositionsabsch?tzung stützt sich auf
cine Vielzahl von unterschiedlichen Probenehmern sowie auf über mehrere Jahre durchgeführte Konzentrationsmessungen in den
aufnahmerelevanten Kompartimenten. Sowohl die Berechnungen als auch die epidemiologischen Untersuchungen zeigen eine leichte
Erh?hung der Quecksilberexposition, gemessen an strengen Richtwerten.
相似文献
The concentrations of PM10 mass, PM2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter.
Methods
Daily PM10 and PM2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters.
Results
The 18-month mean PM10 and PM2.5 mass concentrations ranged from 15.4 ??g/m3 in Helsinki to 56.7 ??g/m3 in Athens and from 9.0 ??g/m3 in Helsinki to 25.0 ??g/m3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm3 in Helsinki to 24,180 part/cm3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM10 with the exception of Athens where PM2.5 comprised 43% of PM10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?0.05.
Conclusions
Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies. 相似文献
Monitoring and laboratory data play integral roles alongside fate and exposure models in comprehensive risk assessments. The principle in the European Union Technical Guidance Documents for risk assessment is that measured data may take precedence over model results but only after they are judged to be of adequate reliability and to be representative of the particular environmental compartments to which they are applied. In practice, laboratory and field data are used to provide parameters for the models, while monitoring data are used to validate the models' predictions. Thus, comprehensive risk assessments require the integration of laboratory and monitoring data with the model predictions. However, this interplay is often overlooked. Discrepancies between the results of models and monitoring should be investigated in terms of the representativeness of both. Certainly, in the context of the EU risk assessment of existing chemicals, the specific requirements for monitoring data have not been adequately addressed. The resources required for environmental monitoring, both in terms of manpower and equipment, can be very significant. The design of monitoring programmes to optimise the use of resources and the use of models as a cost-effective alternative are increasing in importance. Generic considerations and criteria for the design of new monitoring programmes to generate representative quality data for the aquatic compartment are outlined and the criteria for the use of existing data are discussed. In particular, there is a need to improve the accessibility to data sets, to standardise the data sets, to promote communication and harmonisation of programmes and to incorporate the flexibility to change monitoring protocols to amend the chemicals under investigation in line with changing needs and priorities. 相似文献
The desorption kinetics of in situ chlorobenzenes (dichlorobenzenes, pentachlorobenzene and hexachlorobenzene) and 2,4,4′-trichlorobiphenyl (PCB-28) were measured with a gas-purge technique for river Rhine suspended matter sampled in Lobith, The Netherlands. This suspended matter is the main source of sediment accumulation in lake Ketelmeer. In lake Ketelmeer sediment earlier observations showed that slow and very slow fractions dominate the desorption profile.
For the river Rhine suspended matter, only for PCB-28 a fast desorbing fraction of around 1.6% could be detected. The observed rate constants were on the average 0.2 h−1 for fast desorption, 0.004 h−1 for slow desorption, and 0.00022 h−1 for very slow desorption. These values are in agreement with previous findings for the sediment from lake Ketelmeer and with available literature data on fast, slow, and very slow desorption kinetics.
The results from this study show the similarity of desorption profiles between river Rhine suspended matter, and the top layer sediment from lake Ketelmeer. This indicates that slow and very slow fractions are already present in material forming the top layer of lake Ketelmeer, and were not formed after deposition of this material in the lake. The absence of detectable fast fractions for most compounds could be caused by the absence of recent pollution of the suspended matter. But, the observations may also be explained by a rapid disappearance of compounds from the fast fraction due to a combination of a high affinity of very slow sites for these compounds, and their relatively high volatility. 相似文献