Environmental Science and Pollution Research - Activated carbon prepared from grape branches was used as a remarkable adsorbent to uptake naproxen and treat a synthetic mixture from aqueous... 相似文献
Environmental Science and Pollution Research - This study evaluated the nephroprotective effect of kaempferol against cadmium chloride (CdCl2) -induced nephropathy in rats. It also investigated if... 相似文献
Environmental Science and Pollution Research - Dengue fever (DF) is one of the world’s most important vector-borne illnesses. In 2017, Egypt experienced a dengue outbreak. This study aimed to... 相似文献
Environmental Science and Pollution Research - The order Odonata has been regularly used as an indicator of the ecosystem’s condition. The objective of this review was to analyze the... 相似文献
The presence of potentially hazardous elements (PHEs) in playground soils is generally associated with anthropogenic sources such as vehicle traffic, industries, construction sites, and biomass burning. Studies indicate that PHEs are harmful to human health and may even be carcinogenic. Therefore, the aim of this study was to evaluate the physicochemical, morphological, and mineralogical properties of soil samples from three public playgrounds located in the cities of Bogota, Medellin, and Barranquilla. Besides, the possible impacts caused by the aerodynamics of particles in Colombian cities were verified. The morphology, composition, and structure of the nanoparticles (NPs) (< 100 nm) present in these soils were evaluated by field emission scanning electron microscopy (FE-SEM) equipped with high-precision field emission (FE) and high-resolution transmission electron microscopy (HR-TEM). Soil samples were predominantly feldspar, quartz, and, to a lesser extent, clay minerals, carbonates, and hematites. The average content of PHEs was anthropogenically enriched in relation to the upper continental crust. As and Sn showed a large spatial variation, indicating the influence of local sources, such as vehicle traffic and industries. There is an inverse relationship between the total concentrations of some elements and their leachable fractions. The accumulation of traffic-derived PHEs has a negative impact on human health and the environment, which is alarming, especially for elements such as Pb, Sb, or As. Therefore, the presence of PHEs should receive greater attention from public health professionals, and limits should be set and exposures controlled. This study includes the construction of a baseline that provides basic information on pollution, its sources, and exposure routes for humans in the vicinity of Colombia’s major cities, characterized by their increasing urbanization and industrialization.
Marine algae have made a strong contribution to global food security in the future. This study is the first report describing the concentration, pathways, and interactions of halogens in 15 species of marine algae collected from the Eastern Harbor in Alexandria, Egypt, relative to 22 key variables. The relationship between halogen content and chemical and biochemical parameters was studied through multivariate analysis. Among all the tested algae, the iodine content was the lowest (2.53–3.00 μg/g). The range of fluoride and chloride in macroalgae (1.12–1.70 and 0.10–0.46 mg/g) was smaller than that of microalgae (0.10–0.46 and 1.48–3.17 mg/g). The bromide content in macroalgae (0.36–5.45 mg/g) was higher than that in microalgae (0.40–0.76 mg/g). The halogen content in macroalgae was arranged in the order of Br > F > Cl > I. In addition, the biochemical parameters such as carbohydrates, proteins, lipids, and certain heavy metals (Fe, Zn, Cu, Mn, Pb, Ni, Co, Cd, and Cr) were determined. Calories, energy, total antioxidant activity (TAC), K/Na, and ion quotient amounts were estimated. The results showed that the green seaweed species had the highest TAC content. In most of the studied algal species, the calculated ion quotient referred to their likelihood of overcoming high blood pressure. The estimated daily intake (EDI) of algae showed no adverse effects on human health. Most of the research variables are below the acceptable WHO/FAO level. Generally, the calorie content of the selected algae is less than 2 kcal, which makes the algae considered an alternative source of healthy food to reduce obesity.
The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. 相似文献
The toxicity of purified blue-green algal toxin, microcystin-LR, on permanent cell lines KB, NIH/3T3, H-4-II-E, HeLa, Vero, Hep G2, Caco-2 and HL-60 was studied. Assessment of cell viability using colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays indicated that purified microcystin-LR induced toxic effect on KB and H-4-II-E cell lines after 96 h incubation at toxin concentrations greater than 18.75 microg/ml. KB cell line was selected for further study when reproducibility, consistency and sensitivity were considered. Significant amounts of lactate dehydrogenase (LDH) were released from KB cells when incubation durations were 72 and 96 h with toxin concentrations of 18.75 microg/ml and higher. Although previous studies suggested that microcystin-LR had no cytotoxic effect on permanent cell lines, LDH release assay performed on KB cells indicated that exposure to microcystin-LR could result in damage to the cell membrane. 相似文献
The activities of calcium-activated ATPase (Ca2+-ATPase) and calcium magnesium-activated ATPase (Ca2+-Mg2+-ATPase) in the shell gland, and concentrations of 17beta-estradiol (E2) and progesterone in serum were monitored, respectively, from hens orally dosed with tri-o-cresyl phosphate (TOCP) (750 mg/kg). Treated birds were monitored daily for laying and development of delayed neurotoxicity, and activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase were measured at 7 and 10 days after dosing. TOCP-treated birds manifested motor deficit by 7-9 days postdosing, while hens administered vehicle exhibited no signs of delayed neurotoxicity. Ca2+-ATPase and Ca2+-Mg2+-ATPase activities of shell glands from TOCP-dosed hens were not significantly affected (P > 0.05). The serum E2 concentration was significantly reduced in TOCP-treated hens (P < 0.01); however, progesterone levels were unaffected. 相似文献
Monitoring and laboratory data play integral roles alongside fate and exposure models in comprehensive risk assessments. The principle in the European Union Technical Guidance Documents for risk assessment is that measured data may take precedence over model results but only after they are judged to be of adequate reliability and to be representative of the particular environmental compartments to which they are applied. In practice, laboratory and field data are used to provide parameters for the models, while monitoring data are used to validate the models' predictions. Thus, comprehensive risk assessments require the integration of laboratory and monitoring data with the model predictions. However, this interplay is often overlooked. Discrepancies between the results of models and monitoring should be investigated in terms of the representativeness of both. Certainly, in the context of the EU risk assessment of existing chemicals, the specific requirements for monitoring data have not been adequately addressed. The resources required for environmental monitoring, both in terms of manpower and equipment, can be very significant. The design of monitoring programmes to optimise the use of resources and the use of models as a cost-effective alternative are increasing in importance. Generic considerations and criteria for the design of new monitoring programmes to generate representative quality data for the aquatic compartment are outlined and the criteria for the use of existing data are discussed. In particular, there is a need to improve the accessibility to data sets, to standardise the data sets, to promote communication and harmonisation of programmes and to incorporate the flexibility to change monitoring protocols to amend the chemicals under investigation in line with changing needs and priorities. 相似文献