首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41714篇
  免费   383篇
  国内免费   286篇
安全科学   1048篇
废物处理   1650篇
环保管理   5721篇
综合类   6871篇
基础理论   11707篇
环境理论   26篇
污染及防治   10199篇
评价与监测   2512篇
社会与环境   2407篇
灾害及防治   242篇
  2022年   244篇
  2021年   252篇
  2019年   268篇
  2018年   942篇
  2017年   882篇
  2016年   1037篇
  2015年   650篇
  2014年   847篇
  2013年   2756篇
  2012年   1237篇
  2011年   2110篇
  2010年   1607篇
  2009年   1683篇
  2008年   2025篇
  2007年   2300篇
  2006年   1485篇
  2005年   1325篇
  2004年   1289篇
  2003年   1280篇
  2002年   1266篇
  2001年   1504篇
  2000年   1081篇
  1999年   693篇
  1998年   510篇
  1997年   518篇
  1996年   522篇
  1995年   583篇
  1994年   533篇
  1993年   482篇
  1992年   502篇
  1991年   474篇
  1990年   456篇
  1989年   493篇
  1988年   439篇
  1987年   388篇
  1986年   341篇
  1985年   372篇
  1984年   390篇
  1983年   404篇
  1982年   415篇
  1981年   345篇
  1980年   312篇
  1979年   346篇
  1978年   289篇
  1977年   250篇
  1976年   259篇
  1975年   255篇
  1974年   247篇
  1973年   221篇
  1972年   250篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
992.
This paper reports the findings of a preliminary analysis of 15 case studies of inshore marine protected areas in the UK. It draws on the common-pool resource (CPR) literature and is premised on the thesis that building partnership capacity amongst relevant authorities and resource users provides a critical basis for overcoming collective action problems (CAPs), through the development of incentive structures and social capital, in order to achieve strategic objectives. Particular attention is paid to the influence of statutory marine biodiversity conservation obligations to the European Commission for marine special areas of conservation (MSACs), as these are an important external contextual factor. The risks of imposition and parochialism are outlined and the challenges of taking a balanced approach are discussed. The challenges posed by the attributes of the marine environment are considered, as are those posed by the policy framework for MSACs. The findings are discussed in relation to three questions: (i) which partnership models appear to have the potential to overcome the CAPs posed by inshore MSACs? (ii) what CAPs had to be addressed during the early phase of development of the MSAC co-management regimes? (iii) what are the likely future CAPs for the collaborative management of MSACs that each partnership will need to address? These preliminary findings will form the basis for future studies to analyse the outcomes of these 15 initiatives, in order to assess the strengths, in various contexts, of different approaches for building resilient and balanced, thereby effective, institutions for the co-management of MSACs in the UK.  相似文献   
993.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   
994.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   
995.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   
996.
For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.  相似文献   
997.
Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading.  相似文献   
998.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   
999.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   
1000.
ABSTRACT: Water scarcity in the Sevier River Basin in south‐central Utah has led water managers to seek advanced techniques for identifying optimal forecasting and management measures. To more efficiently use the limited quantity of water in the basin, better methods for control and forecasting are imperative. Basin scale management requires advanced forecasts of the availability of water. Information about long term water availability is important for decision making in terms of how much land to plant and what crops to grow; advanced daily predictions of streamflows and hydraulic characteristics of irrigation canals are of importance for managing water delivery and reservoir releases; and hourly forecasts of flows in tributary streams to account for diurnal fluctuations are vital to more precisely meet the day‐to‐day expectations of downstream farmers. A priori streamflow information and exogenous climate data have been used to predict future streamflows and required reservoir releases at different timescales. Data on snow water equivalent, sea surface temperatures, temperature, total solar radiation, and precipitation are fused by applying artificial neural networks to enhance long term and real time basin scale water management information. This approach has not previously been used in water resources management at the basin‐scale and could be valuable to water users in semi‐arid areas to more efficiently utilize and manage scarce water resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号