全文获取类型
收费全文 | 28161篇 |
免费 | 358篇 |
国内免费 | 455篇 |
专业分类
安全科学 | 905篇 |
废物处理 | 1202篇 |
环保管理 | 3946篇 |
综合类 | 5183篇 |
基础理论 | 6862篇 |
环境理论 | 13篇 |
污染及防治 | 7457篇 |
评价与监测 | 1660篇 |
社会与环境 | 1568篇 |
灾害及防治 | 178篇 |
出版年
2022年 | 282篇 |
2021年 | 280篇 |
2020年 | 241篇 |
2019年 | 238篇 |
2018年 | 446篇 |
2017年 | 430篇 |
2016年 | 666篇 |
2015年 | 511篇 |
2014年 | 717篇 |
2013年 | 2220篇 |
2012年 | 948篇 |
2011年 | 1320篇 |
2010年 | 994篇 |
2009年 | 1103篇 |
2008年 | 1230篇 |
2007年 | 1349篇 |
2006年 | 1137篇 |
2005年 | 932篇 |
2004年 | 957篇 |
2003年 | 892篇 |
2002年 | 837篇 |
2001年 | 1010篇 |
2000年 | 775篇 |
1999年 | 475篇 |
1998年 | 307篇 |
1997年 | 341篇 |
1996年 | 317篇 |
1995年 | 398篇 |
1994年 | 338篇 |
1993年 | 317篇 |
1992年 | 282篇 |
1991年 | 319篇 |
1990年 | 283篇 |
1989年 | 288篇 |
1988年 | 273篇 |
1987年 | 234篇 |
1986年 | 228篇 |
1985年 | 231篇 |
1984年 | 290篇 |
1983年 | 253篇 |
1982年 | 275篇 |
1981年 | 236篇 |
1980年 | 211篇 |
1979年 | 245篇 |
1978年 | 175篇 |
1977年 | 169篇 |
1976年 | 147篇 |
1975年 | 167篇 |
1974年 | 179篇 |
1972年 | 150篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Li Q. Liu L. Cai Y. Pei S. Luo Y. Liu L. Fan H. Sun F. Zhou C. Shen X. Chen Y. 《应用与环境生物学报》2018,(3):441-449
Desertification has emerged as a serious threat to the alpine meadows of Northwest Sichuan in recent decades. Artificial vegetation had certain effects on desertification recovery, while how the CO2 flux changed and its reasons are still unclear. During the growing season in 2016 (i.e., from July to September), we selected the desertified alpine meadows with different recovery degrees, including the early stage of restoration, the middle stage of restoration, the late stage of restoration, and control (the unrecovered desertification meadow) as four transects. CO2 flux was measured by the instrument LI-8100, and the microenvironment factors that affected CO2 flux changes were analyzed. The results showed that the carbon sequestration function of desertified alpine meadows gradually increased with the degree of recovery. Net ecosystem exchange (NEE) were -1.61, -3.55, and -4.38 μmol m-2 s-1 in the early, mid-term, and late transects, respectively, and the most dramatic changes occurred from the early stage to mid-term stage, increasing by 120.50%. Both ecosystem respiration (ER) and soil respiration (SR) were enhanced significantly with restoration (P < 0.05). In mid or late July, NEE, ER, and SR reached their maximum values, and thereafter, the indicators varied to near zero (P < 0.05). During the whole growing season, the daily dynamic in CO2 flux for the control alpine meadow was mild and retained the trend of continuous release all day, but that in the desertified alpine meadow was a single peak pattern. Moreover, with restoration process, the peak of CO2 flux increased and reached a peak in the late stage of the recovery process. The regression analysis showed that there was a significant positive correlation between CO2 flux and vegetation coverage, aboveground biomass, and soil moisture (0-5 cm) (P < 0.01), and a weak correlation with 0-5-cm soil temperature (P < 0.01). This indicates that topsoil moisture (5 cm) is a more significant factor for CO2 flux than topsoil temperature during the growing season in the restoration of desertified alpine meadows in Northwest Sichuan. In general, the vegetation recovery significantly improved the carbon-sequestration ability of the desertified alpine meadows during the growing season in Northwest Sichuan, and at the middle stage of restoration, the carbon-sequestration ability improved significantly due to vegetation restoration and increase in topsoil (0-5 cm) moisture. © 2018 Science Press. All rights reserved. 相似文献
992.
993.
Acer catalpifolium Rehd., a critically endangered tree species with an extremely limited range of distribution, is one of the 120 plant species with extremely small populations, as approved by the state forestry administration of the People's Republic of China and requires urgent rescue action. In order to comprehensively understand the population status and the future developmental trend of A. catalpifolium, the plant communities were investigated from 5 sites, including Caishenmiao (CSM), Banruosi (BRS), Zhangshancun (ZSC), Fuhusi (FHS), and Baoguosi (BGS). The population structure of A. catalpifolium as well as the species composition and community characteristics of its habitat were investigated. The results showed that A. catalpifolium is mainly distributed in the evergreen broad-leaved and deciduous broad-leaved mixed forests, in different community layers, namely, the tree layer, shrub layer, and herb layer, and is accompanied by 52, 74, and 52 plant species, respectively. Analyses of the distribution of population abundance revealed that BRS had the largest distribution of A. catalpifolium, accounting for 26.04% of the total population, followed by FHS, ZSC, BGS, and CSM, in that order. Analyses of the community characteristics revealed that the species diversity indices in FHS, BRS, BGS, and CSM were greater than that in ZSC. Analyses of the population age structure of A. catalpifolium revealed the gap in the distribution of the levels of seedlings and young trees. There were serious obstacles to the regeneration of the natural population. We concluded that the obstacle to the regeneration of the population of A. catalpifolium might be caused by the high competitive pressure from the dominant species and the micro-environment in the forest. Understanding the community characteristics and the population structure of A. catalpifolium could provide a theoretical foundation for its reintroduction and recovery. © 2018 Science Press. All rights reserved. 相似文献
994.
Huang B.Gu Y.Chen G.Jin J.Liu L. 《应用与环境生物学报》2018,(4):860-865
To study the effect of flow velocity on drinking water distribution systems, bulk water quality was monitored over 28 days, biomass was measured, and 16S rDNA was sequenced on the 28th day using a water distribution simulation system. The relationship between bulk water quality and biofilm was statistically analyzed. Flow velocity of 0.5 m/s yielded the most total organic carbon (TOC) (5.26 ± 0.17 mg/L) in the bulk water, the most bulk water bacteria (lg (n+1/mL-1) = 4.79 ± 0.02), the worst bulk water quality, and the most biofilm bacteria (lg (n+1/cm-2) = 5.48 ± 0.06). A Pearson correlation analysis showed the total number of biofilm bacteria was positively correlated with conductivity (R = 0.73, P < 0.01), turbidity (R = 0.87, P < 0.001), TOC (R = 0.94, P < 0.001), and total bacteria (R = 0.92, P < 0.001), and was negatively correlated with residual chlorine (R = -0.68, P < 0.05). Biofilm diversity was high under the low (0.1 m/s) and high (2.5 m/s) flow rates, but the bacterial diversity of biofilm was the lowest at the 0.5 m/s flow rate, in which Proteobacteria dominated the biofilm community structure. These results suggest that flow velocity affects bulk water quality and biofilm population structure, and water quality and biofilm population structure are interrelated, which provides the theoretical basis for research on biofilms in drinking water distribution systems. © 2018 Science Press. All rights reserved. 相似文献
995.
Inonotus hispidus is a kind of rare medicinal fungus, and its natural resources are very scarce. Currently, the artificial cultivation technology of I. hispidus is not completely developed, and this reflects on its extremely low biological conversion rate and long cultivation period. In order to improve the bioconversion rate and shorten the production cycle of I. hispidus, we first analyzed the mycelia culture conditions of the collected I. hispidus, and then we further explore the method of domesticated cultivation of its fruiting body in rice medium. During the process of mycelial culture, the suitable temperature, pH, carbon source, and nitrogen source for mycelial growth were selected using the mycelial growth rate as index. During the domesticated cultivation of the fruiting body, the suitable culture medium for its growth was selected using the bioconversion rate as index. Screening results of mycelial culture conditions showed that the optimal culture conditions for the growth of mycelium of the wild I. hispidus were: temperature of 25 °C, initial pH of 6.0, glucose as the carbon source, and yeast extract powder as the source of nitrogen. The results of the domesticated cultivation showed that the biotransformation rate of I. hispidus was higher when using rice as the main medium substrate. The optimal cultivation conditions were: a 0.2% yeast extract content in the nutrient solution, a 1:1.6 ratio of rice to nutrient solution, and a 4 mL inoculum of the liquid strain. Under these conditions, it took about 4 days for the mycelium to grow over the cultivation medium. The time required for the differentiation of the primordium to form fruit bodies was about 20 days, and the bioconversion rate reached 28.70% ± 5.05%. The results of this study indicate the feasibility of using rice as the main substrate for the cultivation of I. hispidus, and it also provide new insights for the finding of new cultivation substrates for other rare medicinal fungi. © 2018 Science Press. All rights reserved. 相似文献
996.
Peatland is an efficient carbon dioxide (CO2) sink on the continent and plays an important role in global carbon cycle. Climate change and human activities, two of the notable global environmental issues, have accelerated the degradation of peatlands during recent years. Global warming will increase the rate of aerobic decomposition in the surface of peatlands. Carbon stored in the subsurface of peatlands will be metabolized if the climatic conditions become favorable for decomposition. This study reviewed the carbon circle of subsurface peatland in natural environment and in environments disturbed by human activity or climate change. Furthermore, the major factors (environmental and human factors) that affect the carbon cycle were also discussed. According to a previous study, subsurface peatland will rapidly participate in the carbon cycle when the peatland is degraded. Water level, vegetation, and temperature were the main natural factors affecting the carbon cycle, whereas drainage, farming, and grazing were the main anthropogenic factors. Further studies should focus on different soil layer carbon dynamics, inorganic carbon content, and conservation and restoration of peatlands. The study methods should be a combination of macro with micro scale and focus on developing deep peat research techniques. Most of the previous studies focused on greenhouse gas emission and their response factors in short-term experiments. Thus, the mechanism and process of subsurface carbon are not clear and needs further study. © 2018 Science Press. All rights reserved. 相似文献
997.
998.
The aims of this study were to verify the suitability of in situ tests using the tropical midge Kiefferulus calligaster and to evaluate the most sensitive endpoint for the assessment of aquatic pesticide contamination. In situ tests were carried out in freshwater drainage channels (farm channels) that supply vegetable crops and receive considerable pesticide spray drift, and at channels outside farms (main channels). Moreover a pesticide-free farm was used as reference site. The endpoints analysed were: survival of the larvae, body length increment, capsule width increment, cholinesterase activity and glutathione S-transferase activity. Seasonal change was investigated as rainy season and dry season. Deleterious effects were observed at some farms especially during the rainy season when farmers apply heavier doses of pesticides. However, high mortality rates observed in main channels suggest that these water bodies are also affected by other impacts besides pesticide use. This work shows the potential of the in situ assay with K. calligaster as a tool for the environmental quality assessment of tropical aquatic ecosystems. 相似文献
999.
The effects of a mixture of insecticides and/or fungicides at different environmental concentrations were investigated on a Aporrectodea caliginosa nocturna population. This laboratory experiment was carried out in order to reproduce Gaillac (France) vineyard conditions. Neurotoxicity (cholinesterase), metabolisation (glutathione-S-transferase) and oxidative stress (catalase) enzymes were studied as biomarkers in earthworms after short-term exposure in terraria. The aim was to observe the global effects of pesticide exposure, as in a vineyard, rather than focus on each isolated biomarker variation, or on each compound's impact. ChE activity was inhibited after a few days of insecticide and/or fungicide exposure, indicative of a neurotoxic effect in earthworms. The significant increase in GST and CAT activities revealed the metabolisation of these products resulting in the production of reactive oxygen species. After a long period of exposure or high concentrations, earthworms were physiologically damaged: they could not cope with the high toxicity (cellular dysfunction, protein catabolism...). Chemical analysis showed that pesticide bioaccumulation in earthworm tissues, even in those exposed to the highest concentrations and for the longest periods, was very low (under LOD) or absent. However, the study of pesticide residues in terraria after 34 days in a climate chamber suggested that earthworms participate in soil pesticide breakdown. 相似文献
1000.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections. 相似文献