首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2215篇
  免费   271篇
  国内免费   831篇
安全科学   241篇
废物处理   100篇
环保管理   216篇
综合类   1565篇
基础理论   314篇
污染及防治   504篇
评价与监测   152篇
社会与环境   113篇
灾害及防治   112篇
  2024年   14篇
  2023年   82篇
  2022年   199篇
  2021年   155篇
  2020年   197篇
  2019年   122篇
  2018年   121篇
  2017年   135篇
  2016年   113篇
  2015年   162篇
  2014年   166篇
  2013年   226篇
  2012年   216篇
  2011年   202篇
  2010年   151篇
  2009年   163篇
  2008年   150篇
  2007年   128篇
  2006年   112篇
  2005年   96篇
  2004年   62篇
  2003年   45篇
  2002年   61篇
  2001年   40篇
  2000年   37篇
  1999年   26篇
  1998年   40篇
  1997年   24篇
  1996年   25篇
  1995年   9篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1988年   2篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有3317条查询结果,搜索用时 640 毫秒
461.
曲雅微  王体健  袁成  吴昊 《环境科学》2023,44(12):6598-6609
近年来,中国大气细颗粒物(PM2.5)污染的治理已取得阶段性成效,但臭氧(O3)污染快速上升,实现PM2.5和O3协同控制的基础与关键是针对大气污染物的精细化探测和污染溯源.随着无人机技术和传感器技术的迅速发展,基于无人机平台的大气污染探测可以有效获得近地层的PM2.5和O3结构特征,并结合计算机算法对大气污染事件进行精准溯源,具有高时效性、高灵活性和高时空分辨率的特征,有助于研究人员了解区域污染物的分布、变化以及来源,为大气复合污染的协同控制提供科学依据.通过回顾传统的大气污染探测方法,总结了污染探测领域常用的无人机飞行平台类型和探测仪器,归纳了基于无人机的PM2.5和O3污染探测应用与相关溯源算法,并展望了无人机大气探测的未来研究方向.  相似文献   
462.
In most of the world's building material industries, the control of flue gas pollutants mainly focuses on a single pollutant. However, given the large capacity and high contribution of China's building materials industry to global air pollution, the need to develop multi-pollutant emission reduction technology is urgent. Recently, China has focused on reducing the emissions of flue gas pollutants in the building materials industry, established many key research and development projects, and gradually implemented more stringent pollutant emission limits. This project focuses on the most recent advances in flue gas emission control technology in China's building materials industry, including denitration, dust removal, desulfurization, synergistic multi-pollutant emission reduction, and the construction of pilot research and demonstration projects for pollutant removal in several building material industries. On this basis, revised pollutant limits in flue gas emitted in China's building material industry are proposed.  相似文献   
463.
The MYH3 gene encodes the embryonic myosin heavy chain, which is crucial for the skeletal and muscular development. The MYH3 variants are associated with distal arthrogryposis type 2A (Freeman-Sheldon syndrome), distal arthrogryposis type 2B3 (Sheldon-Hall syndrome), CPSFS1A (Contractures, pterygia, and spondylocarpostarsal fusion syndrome 1A) and CPSFS1B, which have some shared characteristics and great variability of clinical phenotypes. In this study, we report two novel MYH3 missense variants c.1024T>G (p.Phe342Val) and c.3872A>C (p.Gln1291Pro), demonstrating different phenotypes in the prenatal setting. This study expands the spectrum of MYH3 variants and supports the domain-specific genotype-phenotype correlation of MYH3.  相似文献   
464.
研究重稀土元素钇(Y(III))对短程反硝化工艺的短期和长期影响.结果表明,1~50mg/L的Y(III)对亚硝酸盐的积累量无明显影响,60~100mg/L的Y(III)会影响硝酸盐的还原和亚硝酸盐的积累.1~10mg/L的Y(III)对细菌活性呈现促进作用,20~100mg/L的Y(III)对细菌活性呈现抑制作用.胞外吸附的Y(III)是抑制细菌活性的主要因子,线性拟合的相关性系数R2为0.957,半抑制浓度IC50(吸附)为1.079mg/L(以湿重计),对应水中Y(III)浓度为54.35mg/L.SEM显示,添加Y(III)会使细菌产生更多的胞外聚合物(EPS)将细菌包裹以抵抗Y(III)的毒性,EDS显示被包裹的细菌表面碳、氮元素含量大幅度降低,EPS影响了底物的传质.130d的长期实验表明,5mg/L的Y(III)会使反应器的反硝化性能逐渐消失,停止添加稀土后,反应器的亚硝酸盐积累功能也不能恢复.  相似文献   
465.
To investigate the air quality change during the COVID-19 pandemic, we analyzed spatiotemporal variations of six criteria pollutants in nine typical urban agglomerations in China using ground-based data and examined meteorological influences through correlation analysis and backward trajectory analysis under different responses. Concentrations of PM2.5, PM10, NO2, SO2 and CO in urban agglomerations respectively decreased by 18%–45% (30%–62%), 17%–53% (22%–39%), 47%-64% (14%–41%), 9%–34% (0%–53%) and 16%-52% (23%–56%) during Lockdown (Post-lockdown) period relative to Pre-lockdown period. PM2.5 pollution events occurred during Lockdown in Beijing-Tianjin-Hebe (BTH) and Middle and South Liaoning (MSL), and daily O3 concentration rose to grade Ⅱ standard in Post-lockdown period. Distinct from the nationwide slump of NO2 during Lockdown period, a rebound (~40%) in Post-lockdown period was observed in Cheng-Yu (CY), Yangtze River Middle-Reach (YRMR), Yangtze River Delta (YRD) and Pearl River Delta (PRD). With slightly higher wind speed compared with 2019, the reduction of PM2.5 (51%–62%) in Post-lockdown period is more than 2019 (15%–46%) in HC (Harbin-Changchun), MSL, BTH, CP (Central Plain) and SP (Shandong-Peninsula), suggesting lockdown measures are effective to PM2.5 alleviation. Although O3 concentrations generally increased during the lockdown, its increment rate declined compared with 2019 under similar sunlight duration and temperature. Additionally, unlike HC, MSL and BTH, which suffered from additional (> 30%) air masses from surrounding areas after the lockdown, the polluted air masses reaching YRD and PRD mostly originated from the long-distance transport, highlighting the importance of joint regional governance.  相似文献   
466.
In recent years, poly (butylene adipate-co-terephthalate) (PBAT) has been widely used. However, PBAT-degrading bacteria have rarely been reported. PBAT-degrading bacteria were isolated from farmland soil and identified. The effects of growth factors on the degradation of PBAT and the lipase activity of PBAT-degrading bacteria were assessed. The degradation mechanism was analyzed using scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, X-ray diffraction, and liquid chromatography-mass spectrometry. The results showed that Stenotrophomonas sp. YCJ1 had a significant degrading effect on PBAT. Under certain conditions, the strain could secrete 10.53 U/mL of lipase activity and degrade 10.14 wt.% of PBAT films. The strain secreted lipase to catalyze the degradation of the ester bonds in PBAT, resulting in the production of degradation products such as terephthalic acid, 1,4-butanediol, and adipic acid. Furthermore, the degradation products could participate in the metabolism of YCJ1 as carbon sources to facilitate complete degradation of PBAT, indicating that the strain has potential value for the bioremediation of PBAT in the environment.  相似文献   
467.
Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.  相似文献   
468.
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.  相似文献   
469.
综述了高压氢气泄漏后相关燃爆事故及行为研究现状,总结了泄漏自燃、喷射火、气云爆炸等典型燃爆行为的研究现状、方法及结论,探明了典型氢泄漏后燃爆事故的关键控制参数,提出了现有高压氢气泄漏后燃爆风险实验及数值模拟研究存在的不足,并结合实际氢能场景,从实验尺度、初始条件、边界条件等方面对未来的研究方向进行了展望。  相似文献   
470.
钢铁企业是CO2排放大户,减少吨钢CO2排放是钢铁企业节约能源、保护环境、走可持续发展道路的必然要求.本研究旨在对钢铁企业产品生命周期清单研究的基础上,识别钢铁企业CO2排放的主要影响因素,提出针对性的减排建议.以某钢铁联合企业的产品生命周期清单模型为平台,同时利用TornadoChart工具,计算得到对企业CO2排放影响较大的因素,然后提出了相应的减排措施.结果表明,转炉流程对于钢铁企业的影响要大于电炉流程;对该企业CO2排放有重大影响和相关影响的因素有:高炉煤气(BFG)的CO2排放系数、连铸坯的钢水单耗、热轧的板坯单耗、转炉的铁水比.减少钢铁联合企业CO2排放的有效措施是采取捕集BFG中的CO2、降低转炉的铁水比、加强副产煤气的回收以及优化企业的产品生产结构.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号