首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
废物处理   1篇
环保管理   6篇
综合类   3篇
基础理论   12篇
污染及防治   4篇
评价与监测   1篇
社会与环境   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1988年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
11.
12.
We determined the biogeographical distributions of stream bacteria and the biogeochemical factors that best explained heterogeneity for 23 locations within the Hubbard Brook watershed, a 3000-ha forested watershed in New Hampshire, USA. Our goal was to assess the factor, or set of factors, responsible for generating the biogeographical patterns exhibited by microorganisms at the landscape scale. We used DNA fingerprinting to characterize bacteria inhabiting fine benthic organic matter (FBOM) because of their important influence on stream nutrient dynamics. Across the watershed, streams of similar pH had similar FBOM bacterial communities. Streamwater pH was the single variable most strongly correlated with the relative distance between communities (Spearman's p = 0.66, P < 0.001) although there were other contributing factors, including the quality of the fine benthic organic matter and the amount of dissolved organic carbon and nitrogen in the stream water (P < 0.05 for each). There was no evidence of an effect of geographic distance on bacterial community composition, suggesting that dispersal limitation has little influence on the observed biogeographical patterns in streams across this landscape. Cloning and sequencing of small-subunit rRNA genes confirmed the DNA fingerprinting results and revealed strong shifts among bacterial groups along the pH gradient. With an increase in streamwater pH, the abundance of acidobacteria in the FBOM bacterial community decreased (from 71% to 38%), and the abundance of proteobacteria increased (from 11% to 47%). Together these results suggest that microorganisms, like "macro"-organisms, do exhibit biogeographical patterns at the landscape scale and that these patterns may be predictable based on biogeochemical factors.  相似文献   
13.
Maintaining pasture ground cover is important in preventing environmental degradation of grasslands and associated riparian areas. The objective of this work was to determine the effect of ground cover on sediment and P export from pastured riparian areas under simulated rainfall events. Plots were established on two sites in the North Carolina Piedmont: a 10% slope with Appling sandy loam soils (fine, kaolinitic, thermic Typic Kanhapludults) and a 20% slope with Wedowee sandy loam soils (fine, kaolinitic, thermic Typic Kanhapludults), both with mixed tall fescue (Festuca arundinacea Schreb.)-dallisgrass (Paspalum dilatatum Poir.) vegetation. Existing forage stands were modified to represent a range of ground cover levels: 0, 45, 70, and 95% (bare ground, low, medium, and high cover, respectively), and amended with beef steer (Bos taurus) feces and urine (about 10 kg P ha(-1)). Mean runoff volume from bare ground was generally twice that observed from low, medium, and high levels of cover, which were similar. For all rainfall events combined, export of dissolved reactive P was greatest (P < 0.1) at bare ground and was reduced 31% at low cover, which did not differ from medium or high cover. Mean total Kjeldahl P export was greater (P < 0.001) from bare ground than from other cover levels. Results indicate that riparian bare areas can contribute substantial sediment (>215 kg ha(-1)) and P (0.7 kg P ha(-1)) to surface waters during heavy rainfall, whereas export may be reduced equally well by low cover (45%) as by high cover.  相似文献   
14.
The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2<0.17, P>0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2>0.75, P<0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities.  相似文献   
15.
Assessing causes of population decline is critically important to management of threatened species. Stochastic patch occupancy models (SPOMs) are popular tools for examining spatial and temporal dynamics of populations when presence–absence data in multiple habitat patches are available. We developed a Bayesian Markov chain method that extends existing SPOMs by focusing on past environmental changes that may have altered occupancy patterns prior to the beginning of data collection. Using occupancy data from 3 creeks, we applied the method to assess 2 hypothesized causes of population decline—in situ die-off and residual impact of past source population loss—in the California red-legged frog. Despite having no data for the 20–30 years between the hypothetical event leading to population decline and the first data collected, we were able to discriminate among hypotheses, finding evidence that in situ die-off increased in 2 of the creeks. Although the creeks had comparable numbers of occupied segments, owing to different extinction–colonization dynamics, our model predicted an 8-fold difference in persistence probabilities of their populations to 2030. Adding a source population led to a greater predicted persistence probability than did decreasing the in situ die-off, emphasizing that reversing the deleterious impacts of a disturbance may not be the most efficient management strategy. We expect our method will be useful for studying dynamics and evaluating management strategies of many species.  相似文献   
16.
Hybridization between endangered species and more common species is a significant problem in conservation biology because it may result in extinction or loss of adaptation. The historical reduction in abundance and geographic distribution of the American plains bison (Bison bison bison) and their recovery over the last 125 years is well documented. However, introgression from domestic cattle (Bos taurus) into the few remaining bison populations that existed in the late 1800s has now been identified in many modern bison herds. We examined the phenotypic effect of this ancestry by comparing weight and height of bison with cattle or bison mitochondrial DNA (mtDNA) from Santa Catalina Island, California (U.S.A.), a nutritionally stressful environment for bison, and of a group of age‐matched feedlot bison males in Montana, a nutritionally rich environment. The environmental and nutritional differences between these 2 bison populations were very different and demonstrated the phenotypic effect of domestic cattle mtDNA in bison over a broad range of conditions. For example, the average weight of feedlot males that were 2 years of age was 2.54 times greater than that of males from Santa Catalina Island. In both environments, bison with cattle mtDNA had lower weight compared with bison with bison mtDNA, and on Santa Catalina Island, the height of bison with cattle mtDNA was lower than the height of bison with bison mtDNA. These data support the hypothesis that body size is smaller and height is lower in bison with domestic cattle mtDNA and that genomic integrity is important for the conservation of the American plains bison. Efectos Fenotípicos del ADN Mitocondrial de Ganado en el Bisonte Americano  相似文献   
17.
Mercury(Hg) is a toxic and bio-accumulating heavy metal that is predominantly released via the combustion of coal. Due to its toxicity, the Environmental Protection Agency(EPA)has introduced Mercury and Air Toxics Standards(MATS) Rule regarding allowable Hg emissions. In order to reduce emissions, power plants have widely adopted activated carbon(AC) injection. AC injection has proven to be an effective method to reduce Hg emissions, but the re-emission of previously adsorbed Hg during unit operation, likely due to changing temperature or flue gas composition, could be problematic. This study specifically examined the effects of temperature and sulfur trioxide(SO3) concentration,by ramping temperature and SO3 concentration independently and simultaneously, on AC samples that are already exposed to flue gas and saturated in presence of Hg, sulfur dioxide(SO2) and nitric oxide(NO). Of these two suspected factors to cause re-emission,temperature had the greater impact and resulted in re-emission of both elemental and oxidized Hg with a greater fraction of oxidized Hg, which can be attributed to elemental Hg being more strongly bonded to the AC surface. Surprisingly, exposing the samples to increasing concentrations of SO3 had nearly no effect under the conditions examined in this study, possibly as a result of the samples being already saturated with sulfur prior to the SO3 ramp tests to simulate transient conditions in the plant.  相似文献   
18.
We report two second trimester pregnancy terminations in the same woman following intrauterine ultrasonic findings of hydrops fetalis, polyhydramnios, lack of fetal movements, and short, fixed malformed limbs. One fetus also showed a cystic mass at the back of the head. Radiographic and anatomic studies of the fetuses demonstrated multiple pterygia, flexion contracture of multiple joints, abnormal facial appearance, cleft palate, pulmonary hypoplasia, and gracile bones. The cystic mass of the back of the head was found to be a cystic hygroma. These findings are consistent with the lethal variant of multiple pterygium syndrome. Early prenatal diagnosis of this condition is possible using ultrasonography.  相似文献   
19.
Microbial nitrogen limitation increases decomposition   总被引:13,自引:0,他引:13  
Craine JM  Morrow C  Fierer N 《Ecology》2007,88(8):2105-2113
With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of plants individually added to a single soil, while in the second, C mineralization from a single substrate was compared across 50 soils. Counter to basic stoichiometric decomposition theory, low N availability can increase litter decomposition as microbes use labile substrates to acquire N from recalcitrant organic matter. This "microbial nitrogen mining" is consistently suppressed by high soil N supply or substrate N concentrations. There is no evidence for phosphorus mining as P fertilization increases short- and long-term mineralization. These results suggest that basic stoichiometric decomposition theory needs to be revised and ecosystem models restructured accordingly in order to predict ecosystem carbon storage responses to anthropogenic changes in nutrient availability.  相似文献   
20.
Environment Systems and Decisions - Given the growing prevalence of catastrophic events and health epidemics, policymakers are increasingly searching for effective strategies to encourage firms to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号