首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29164篇
  免费   181篇
  国内免费   135篇
安全科学   437篇
废物处理   1578篇
环保管理   3312篇
综合类   5168篇
基础理论   7552篇
环境理论   11篇
污染及防治   6988篇
评价与监测   2289篇
社会与环境   2082篇
灾害及防治   63篇
  2022年   227篇
  2021年   256篇
  2020年   129篇
  2019年   177篇
  2018年   1693篇
  2017年   1610篇
  2016年   1594篇
  2015年   498篇
  2014年   613篇
  2013年   1456篇
  2012年   1102篇
  2011年   2119篇
  2010年   1310篇
  2009年   1245篇
  2008年   1694篇
  2007年   2026篇
  2006年   822篇
  2005年   688篇
  2004年   705篇
  2003年   701篇
  2002年   680篇
  2001年   695篇
  2000年   435篇
  1999年   337篇
  1998年   212篇
  1997年   222篇
  1996年   240篇
  1995年   255篇
  1994年   256篇
  1993年   226篇
  1992年   211篇
  1991年   221篇
  1990年   214篇
  1989年   183篇
  1988年   182篇
  1987年   164篇
  1986年   171篇
  1985年   159篇
  1984年   189篇
  1983年   186篇
  1982年   191篇
  1981年   152篇
  1980年   145篇
  1979年   131篇
  1978年   142篇
  1977年   122篇
  1976年   109篇
  1975年   115篇
  1974年   121篇
  1967年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Unsustainable wildlife trade affects biodiversity and the livelihoods of communities dependent upon those resources. Wildlife farming has been proposed to promote sustainable trade, but characterizing markets and understanding consumer behavior remain neglected but essential steps in the design and evaluation of such operations. We used sea turtle trade in the Cayman Islands, where turtles have been farm raised for human consumption for almost 50 years, as a case study to explore consumer preferences toward wild‐sourced (illegal) and farmed (legal) products and potential conservation implications. Combining methods innovatively (including indirect questioning and choice experiments), we conducted a nationwide trade assessment through in‐person interviews from September to December 2014. Households were randomly selected using disproportionate stratified sampling, and responses were weighted based on district population size. We approached 597 individuals, of which 37 (6.2%) refused to participate. Although 30% of households had consumed turtle in the previous 12 months, the purchase and consumption of wild products was rare (e.g., 64–742 resident households consumed wild turtle meat [i.e., 0.3–3.5% of households] but represented a large threat to wild turtles in the area due to their reduced populations). Differences among groups of consumers were marked, as identified through choice experiments, and price and source of product played important roles in their decisions. Despite the long‐term practice of farming turtles, 13.5% of consumers showed a strong preference for wild products, which demonstrates the limitations of wildlife farming as a single tool for sustainable wildlife trade. By using a combination of indirect questioning, choice experiments, and sales data to investigate demand for wildlife products, we obtained insights about consumer behavior that can be used to develop conservation‐demand‐focused initiatives. Lack of data from long‐term social–ecological assessments hinders the evaluation of and learning from wildlife farming. This information is key to understanding under which conditions different interventions (e.g., bans, wildlife farming, social marketing) are likely to succeed.  相似文献   
922.
It has been suggested that in order to infer ecological processes from observed patterns of species abundance we need to investigate the covariance in species abundance. Consequently, an expression for the expected covariance of pin-point cover measurements of two species is developed. By comparing the observed covariance with the expected covariance we get a new type of information on the spatial arrangement of two species. Here the discrepancy between the observed and expected covariance may be thought of as a measure of the spatial configuration of the two species that may indicate underling ecological processes. The method is applied in a case study of Calluna vulgaris and Deschampsia flexuosa on dry heathland sites. The observed covariance of Calluna and Deschampsia at the level of the sites was positively and significantly correlated with the expected covariance. Negative covariance was observed on sites where both Calluna and Deschampsia had a high cover, which is in agreement with the notion that both species form distinct patches. Oppositely, at sites where both species have a low cover, we found that both the expected and observed covariance were positive. The proposed measure for the expected covariance of two species does capture information on the combined spatial configuration of the two species if the species are common. We show how this may be relevant for understanding the underlying ecological processes leading to the observed covariance.  相似文献   
923.
A new spatially balanced sampling design for environmental surveys is introduced, called Halton iterative partitioning (HIP). The design draws sample locations that are well spread over the study area. Spatially balanced designs are known to be efficient when surveying natural resources because nearby locations tend to be similar. The HIP design uses structural properties of the Halton sequence to partition a resource into nested boxes. Sample locations are then drawn from specific boxes in the partition to ensure spatial diversity. The method is conceptually simple and computationally efficient, draws spatially balanced samples in two or more dimensions and uses standard design-based estimators. Furthermore, HIP samples have an implicit ordering that can be used to define spatially balanced over-samples. This feature is particularly useful when sampling natural resources because we can dynamically add spatially balanced units from the over-sample to the sample as non-target or inaccessible units are discovered. We use several populations to show that HIP sampling draws spatially balanced samples and gives precise estimates of population totals.  相似文献   
924.
We investigate the effect of buoyancy on the small-scale aspects of turbulent entrainment by performing direct numerical simulation of a gravity current and a wall jet. In both flows, we detect the turbulent/nonturbulent interface separating turbulent from irrotational ambient flow regions using a range of enstrophy iso-levels spanning many orders of magnitude. Conform to expectation, the relative enstrophy isosurface velocity \(v_n\) in the viscous superlayer scales with the Kolmogorov velocity for both flow cases. We connect the integral entrainment coefficient E to the small-scale entrainment and observe excellent agreement between the two estimates throughout the viscous superlayer. The contribution of baroclinic torque to \(v_n\) is negligible, and we show that the primary reason for reduced entrainment in the gravity current as compared to the wall-jet are 1) the reduction of \(v_n\) relative to the integral velocity scale \(u_T\); and 2) the reduction in the surface area of the isosurfaces.  相似文献   
925.
A two-dimensional inviscid model of the gravity-current head produced by the release of a relatively small volume of dense fluid from behind a tall lock gate is constructed by Lagrangian block simulation. Three numerical experiments are conducted for the lock’s height-to-length aspect ratios H/L o  = 8, 4 and 2. The front speeds obtained by the simulations agree with the laboratory observation for a similar range of aspect ratios. The floor velocity in the wake behind these heads is found to be greater than their front speed. The high floor velocity is caused by the impingement of the coherent wake vortex on the floor. It is a condition that permits these gravity-current heads to maintain their structural integrity so that the fine sediments can travel with the head over long distances on the ocean floor. The structural coherence of the current head depends on the lock aspect ratio. The gravity-current head produced by the release from the lock with the highest aspect ratio of H/L o  = 8 is most coherent and relatively has the greatest floor velocity and the least trailing current behind the head.  相似文献   
926.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   
927.
The micro-scale prediction of sand trapping or take-off over hilly terrains is a crucial issue in semi-arid regions for soil depletion. In this context, large eddy simulations around one or several hills are performed in order to provide statistical parameters to characterize the flow at micro-scales and provide data for mesoscale modelling. We focus on the determination of recirculation zones since they play an important role in solid particle erosion or entrapment. A new wall modeling adapted from Huang et al. (J Turbul 17:1–24, 2016) for rough boundary layers is found to improve the prediction of the recirculation zone length downstream of an isolated hill and is used for all the numerical cases presented here. A geometrical parameterization of the recirculation zones is proposed. When the recirculation region is assumed to have an ellipsoidal shape, the total surface of the recirculation can be obtained from this new parameterization and easily extrapolated to more general dune configurations. Numerical results are compared with experiments performed in our laboratory (Simoëns et al. in Procedia IUTAM 17:110–118, 2015) and good agreement is achieved. We explore general aerodynamic cases deduced from the urban canopy scheme of Oke (Energy Build 11:103–113, 1988). In this scheme the momentum and mass exchange between the upper layer and the space between hills is sorted according to the streamwise hill spacing within three basic cases of skimming, wake or isolated flow. The study of the recirculation zones, the mean velocity and Reynolds stress profiles around an isolated or two consecutive hills with different distances shows that the double hill configuration with 3H separation behaves as much as a whole to the upcoming flow. The vortex formed between the crests does not strongly affect the overall evolution of the outer flow. By an a priori prediction of the preferential zones of erosion and accumulation of fictive particles, it is shown that isolated dunes present more deposition and less erosion than two-hill configurations. The results presented in this study will be discussed in the presence of Lagrangian transport of sand particles above 2D Gaussian hills in future work.  相似文献   
928.
Gravity currents descending along slopes have typically been studied in quiescent environments, despite the fact that in many geophysical settings there is significant externally driven motion. Here we investigate how the head of a gravity current is influenced by interfacial internal waves at the pycnocline of a two-layer ambient water column. Our experimental measurements show that larger amplitude internal waves, interacting with the gravity current, reduce both the mass transport by the gravity current and its thickness. These results suggest that the ambient internal wave field should be considered when estimating transport by gravity currents in geophysical settings with strong internal waves, such as lakes and the coastal ocean.  相似文献   
929.
We used an unmanned aircraft system (UAS) to lift and suspend distributed temperature sensing (DTS) technologies to observe the onset of an early morning transition from stable to unstably stratified atmospheric conditions. DTS employs a fiber optic cable interrogated by laser light, and uses the temperature dependent Raman scattering phenomenon and the speed of light to obtain a discrete spatial measurement of the temperature along the cable. The UAS/DTS combination yielded observations of temperature in the lower atmosphere with high resolution (1 s and 0.1 m) and extent (85 m) that revealed the detailed processes that occurred over a single morning transition. The experimental site was selected on the basis of previous experiments and long term data records; which indicate that diurnal boundary layer development and wind sectors are predictable and consistent. The data showed a complex interplay of motions that occur during the morning transition that resulted in propagation and growth of unstable wave modes. We observed a rapid cooling of the air aloft (layer above the strong vertical temperature gradient) layer directly after sunrise due to vertical mixing followed by an erosion of the strong gradient at the stable layer top. Midway through the transition, unstable wave modes were observed that are consistent with Kelvin–Helmholtz motions. These motions became amplified through the later stages of the transition.  相似文献   
930.
Dynamics of the surface layer in different liquids is examined by means of infrared thermography of the surface and simultaneous velocity fields measurements using surface and infrared Particle Image Velocimetry. This technique allows measurements and comparison of two velocity fields—at the surface and at small depth about 50–200 μm. In distilled water the velocity fields at the surface and at small depth exhibit significant dissimilarity. The flow field below the surface is essentially 3D, whereas the surface flow is characterized by vanishing 2D divergence of velocity, indicating predominantly planar motion. In contrast, in ethanol–butanol mixture two velocity fields are well correlated, both corresponding to 3D flow with continuous surface renewal. Thermal patterns, observed at the surface, and the flow field structure in different liquids are associated with different boundary conditions for velocity at the surface. Water surface is seldom renewed, which inhibits heat and mass exchange between the liquid and atmosphere. However, absence of vertical advection also enables organisms to live within the surface layer, to stand and walk on the free surface. This is illustrated by the difficulties a water strider faces on the surface of ultrapure water, which exhibits Marangoni convection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号