首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26960篇
  免费   263篇
  国内免费   222篇
安全科学   659篇
废物处理   934篇
环保管理   3577篇
综合类   6341篇
基础理论   6290篇
环境理论   11篇
污染及防治   6735篇
评价与监测   1490篇
社会与环境   1298篇
灾害及防治   110篇
  2021年   178篇
  2018年   305篇
  2017年   305篇
  2016年   468篇
  2015年   372篇
  2014年   528篇
  2013年   1934篇
  2012年   674篇
  2011年   988篇
  2010年   736篇
  2009年   898篇
  2008年   1021篇
  2007年   1071篇
  2006年   970篇
  2005年   767篇
  2004年   818篇
  2003年   832篇
  2002年   754篇
  2001年   1000篇
  2000年   659篇
  1999年   474篇
  1998年   316篇
  1997年   330篇
  1996年   369篇
  1995年   385篇
  1994年   393篇
  1993年   371篇
  1992年   342篇
  1991年   351篇
  1990年   374篇
  1989年   340篇
  1988年   304篇
  1987年   292篇
  1986年   266篇
  1985年   285篇
  1984年   292篇
  1983年   299篇
  1982年   302篇
  1981年   283篇
  1980年   260篇
  1979年   241篇
  1978年   249篇
  1977年   217篇
  1976年   220篇
  1975年   194篇
  1974年   236篇
  1973年   199篇
  1972年   197篇
  1971年   181篇
  1967年   200篇
排序方式: 共有10000条查询结果,搜索用时 96 毫秒
841.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
842.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   
843.
The effects of prescribed burning on forage abundance and suitability for elk (Cervus elaphus) during the snow-free season was evaluated in east-central Banff National Park, Canada. Six coniferous forest and mixed shrub-herb plant communities (n=144 plots), and 5223ha of burned (n=131) vegetation <12 years old were sampled using a stratified semi-random design. Sampling units represented various combinations of vegetation, terrain conditions, and stand ages that were derived from digital biophysical data, with plant communities the basic unit of analysis. Burning coniferous forest stands reduced woody biomass, and increased herbaceous forage from 146 to 790 kg/ha. Increases commonly occurred in the percent cover of hairy wild rye (Leymus innovatus (Beal) Pigler) and fireweed (Chamerion angustifolium (L.) Holub.). The herbaceous components of mixed shrub-herb communities increased from 336-747 kg/ha to 517-1104 kg/ha in response to burning (P<0.025, Mann-Whitney U-test). Browse biomass (mostly Salix spp. and Betula nana L.) increased >or=220% (P相似文献   
844.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   
845.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   
846.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   
847.
This study used the stable 15N isotope to quantitatively examine the effects of cutting on vegetative buffer uptake of NO3(-)-N based on the theory that regular cutting would increase N demand and sequestration by encouraging new plant growth. During the summer of 2002, 10 buffer plots were established within a flood-irrigated pasture. In 2003, 15N-labeled KNO3 was applied to the pasture area at a rate of 5 kg N ha(-1) and 99.7 atom % 15N. One-half of the buffer plots were trimmed monthly. In the buffers, the cutting effect was not significant in the first few weeks following 15N application, with both the cut and uncut buffers sequestering 15N. Over the irrigation season, however, cut buffers sequestered 2.3 times the 15N of uncut buffers, corresponding to an increase in aboveground biomass following cutting. Cutting and removing vegetation allowed the standing biomass to take advantage of soil 15N as it was released by microbial mineralization. In contrast, the uncut buffers showed very little change in 15N sequestration or biomass, suggesting senescence and a corresponding decrease in N demand. Overall, cutting significantly improved 15N attenuation from both surface and subsurface water. However, the effect was temporally related, and only became significant 21 to 42 d after 15N application. The dominant influence on runoff water quality from irrigated pasture remains irrigation rate, as reducing the rate by 75% relative to the typical rate resulted in a 50% decrease in total runoff losses and a sevenfold decrease in 15N concentration.  相似文献   
848.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   
849.
Diazinon [O,O-diethyl O-2-isopropyl-6-methyl(pyrimidine-4-yl) phosphorothioate] and imidacloprid [1-(1-[6-chloro-3-pyridinyl]methyl)-N-nitro-2-imidazolidinimine] are applied to lawns for insect control simultaneously with nitrogenous fertilizers such as urea, but their potential effect on urease activity and nitrogen availability in turfgrass management has not been evaluated. Urease activity in enzyme assays, washed cell assays, and soil slurries was examined as a function of insecticide concentration. Intact cores from field sites were used to assess the effect of insecticide application on urease activity in creeping bentgrass (Agrostis palustris Huds.) and bluegrass (Poa pratensis L.) sod. Bacterial urease from Bacillus pasteurii and plant urease from jack bean [Canavalia ensiformis (L.) DC.] were unaffected by the insecticides. Both insecticides inhibited the growth of Proteus vulgaris, a urease-producing bacterium, but only diazinon significantly reduced urease activity in washed cells; neither insecticide inhibited urease activity in sonicated cells. Neither diazinon nor imidacloprid inhibited urease activity in Woolper soil (fine, mixed, mesic Typic Argiudoll) slurries, but diazinon slightly inhibited urease activity in Maury soil (fine, mixed, semiactive, mesic Typic Paleudalf) slurries. Imidacloprid had no effect on urease activity in creeping bentgrass or bluegrass sod at up to 10 times the commercial application rate. Diazinon briefly, but significantly, reduced urease activity in bluegrass sod. Co-application of imidacloprid and urea appears to be benign with respect to urease activity in soil and sod. Diazinon, in contrast, appears to have a significant, short-term, inhibitory effect on the microbial urease-producing community, but that effect depends on soil type.  相似文献   
850.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号