首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20790篇
  免费   144篇
  国内免费   117篇
安全科学   333篇
废物处理   900篇
环保管理   2549篇
综合类   4086篇
基础理论   5428篇
环境理论   6篇
污染及防治   4529篇
评价与监测   1395篇
社会与环境   1779篇
灾害及防治   46篇
  2022年   109篇
  2021年   122篇
  2019年   101篇
  2018年   732篇
  2017年   690篇
  2016年   712篇
  2015年   283篇
  2014年   363篇
  2013年   1080篇
  2012年   605篇
  2011年   1305篇
  2010年   856篇
  2009年   973篇
  2008年   1210篇
  2007年   1456篇
  2006年   601篇
  2005年   572篇
  2004年   555篇
  2003年   612篇
  2002年   606篇
  2001年   629篇
  2000年   400篇
  1999年   296篇
  1998年   204篇
  1997年   203篇
  1996年   221篇
  1995年   230篇
  1994年   230篇
  1993年   216篇
  1992年   195篇
  1991年   205篇
  1990年   196篇
  1989年   169篇
  1988年   168篇
  1987年   154篇
  1986年   153篇
  1985年   148篇
  1984年   180篇
  1983年   170篇
  1982年   172篇
  1981年   144篇
  1980年   132篇
  1979年   123篇
  1978年   134篇
  1977年   115篇
  1976年   103篇
  1975年   107篇
  1974年   118篇
  1971年   98篇
  1967年   101篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Different synthesis methods were applied to determine optimal conditions for polymerization of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (l-lactide), in order to obtain poly(l-lactide) (PLLA). Bulk polymerizations (in vacuum sealed vessel, high pressure reactor and in microwave field) were performed with tin(II) 2-ethylhexanoate as the initiator. Synthesis in the vacuum sealed vessel was carried out at the temperature of 150 °C. To reduce the reaction time second polymerization process was carried out in the high pressure reactor at 100 °C and at the pressure of 138 kPa. The third type of rapid synthesis was done in the microwave reactor at 100 °C, using frequency of 2.45 GHz and power of 150 W at the temperature of 100 °C. The temperature in this method was controlled via infrared system for in-bulk measuring. The solution polymerization (with trifluoromethanesulfonic acid as initiator) was possible even at the temperature of 40 °C, yielding PLLA with narrow molecular weight distribution in a very short period of time (less than 6 h). The obtained polymers had the number-average molecular weights ranging from 43,000 to 178,000 g mol−1 (polydispersity index ranging from 1 to 3) according to the gel permeation chromatography measurements. The polymer structure was characterized by Fourier transform infrared and NMR spectroscopy. Thermal properties of the obtained polymers were investigated using thermogravimetry and differential scanning calorimetry.  相似文献   
992.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
993.
Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.  相似文献   
994.
For both private corporations and military branches, downsizing and consolidation are becoming more commonplace. A range of environmental concerns must be addressed to effectively implement a consolidation program. A facility deactivation program can often become a minefield for an organization. Responsible personnel are typically inexperienced with the process, and this can lead to costly mistakes. This article provides insight into this topic based on experience gained with a multifacility program and related environmental issues. It emphasizes the importance of detailed, up-front, proactive project planning; a solid program management system; and accurate identification of project objectives and deliverables.  相似文献   
995.
This study explores different socio-economic and institutional factors influencing the adoption of improved soil conservation technology (ISCT) on Bari land (Rainfed outward sloping terraces) in the Middle Mountain region of Central Nepal. Structured questionnaire survey and focus group discussion methods were applied to collect the necessary information from farm households. The logistic regression model predicted seven factors influencing the adoption of improved soil conservation technology in the study area including years of schooling of the household head, caste of the respondent, land holding size of the Bari land, cash crop vegetable farming, family member occupation in off farm sector, membership of the Conservation and Development Groups, and use of credit. The study showed that technology dissemination through multi-sectoral type community based local groups is a good option to enhance the adoption of improved soil conservation technology in the Middle Mountain farming systems in Nepal. Planners and policy makers should formulate appropriate policies and programs considering the farmers' interest, capacity, and limitation in promoting improved soil conservation technology for greater acceptance and adoption by the farmers.  相似文献   
996.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   
997.
Historical and recent remote sensing data can be used to address temporal and spatial relationships between upland land cover and downstream vegetation response at the watershed scale. This is demonstrated for sub-watersheds draining into Elkhorn Slough, California, where salt marsh habitat has diminished because of the formation of sediment fans that support woody riparian vegetation. Multiple regression models were used to examine which land cover variables and physical properties of the watershed most influenced sediment fan size within 23 sub-watersheds (1.4 ha to 200 ha). Model explanatory power increased (adjusted R(2) = 0.94 vs. 0.75) among large sub-watersheds (>10 ha) and historical watershed variables, such as average farmland slope, flowpath slope, and flowpath distance between farmland and marsh, were significant. It was also possible to explain the increase in riparian vegetation by historical watershed variables for the larger sub-watersheds. Sub-watershed area is the overriding physical characteristic influencing the extent of sedimentation in a salt marsh, while percent cover of agricultural land use is the most influential land cover variable. The results also reveal that salt marsh recovery depends on relative cover of different land use classes in the watershed, with greater chances of recovery associated with less intensive agriculture. This research reveals a potential delay between watershed impacts and wetland response that can be best revealed when conducting multi-temporal analyses on larger watersheds.  相似文献   
998.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   
999.
ABSTRACT: A three-year study has been conducted on a 4.6 mile stretch of the Saddle River near Lodi, New Jersey. The primary objectives of this investigation were (1) to provide baseline information on the concentration and distribution of heavy metals in bottom sediments of the Saddle River; (2) to qualitatively evaluate which parameters affect this distribution; and (3) to determine the effect of urbanization on the concentration and distribution of these materials. Significant enrichments of several heavy metals were observed in bottom sediments of the lower Saddle River near Lodi, New Jersey, as compared to the upper Saddle River. Attempts to correlate metal concentrations in bottom sediments with chemical-oxygen demand were not successful in demonstrating a relationship between these two factors. Metal concentrations were found to be strongly dependent upon particle size. In general, metal concentrations in bottom sediments increased with decreasing partical diameter. However, metals enrichment was observed to be considerably greater in the larger sediment fractions studied (>420μ) than the smaller sediment fractions as one proceeded downstream through the urban area. Since the larger sediment fractions are least effected by scour and transport they may best reflect the effect of urbanization on the distribution of heavy metals over an extended period of time at a given location.  相似文献   
1000.
Understanding pollutant sorption, bioremediation of these pollutants, and their interactions with humic substances requires knowledge of molecular-level processes. New developments with nuclear magnetic resonance (NMR) experiments and labeled compounds have improved the overall understanding of these mechanisms. The advancements made with two-dimensional NMR show great promise, as structural information and hydrogen-carbon bond connectivity can be discerned. This communication presents the application of improved two-dimensional NMR methods, the double quantum filtered (DQF) correlation spectroscopy (COSY) and echo/anti-echo heteronuclear single quantum coherence (HSQC) experiments, for use in structural studies of humic substances. Both experiments were found to produce significant improvements over the conventional COSY and heteronuclear multiple quantum coherence (HMQC) experiments that have been previously employed in similar studies. The more sensitive echo/anti-echo HSQC experiment produced more cross-peaks with higher resolution when compared with the HMQC spectra. The DQF-COSY significantly suppressed the diagonal signals and allowed numerous signals previously hidden in the standard COSY experiment to be observed. These improvements will aid current characterization strategies of humic substances from soils, sediments, and water and their subsequent reactions with pollutants and microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号