首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2692篇
  免费   371篇
  国内免费   922篇
安全科学   313篇
废物处理   97篇
环保管理   211篇
综合类   1978篇
基础理论   360篇
污染及防治   497篇
评价与监测   184篇
社会与环境   234篇
灾害及防治   111篇
  2024年   16篇
  2023年   74篇
  2022年   206篇
  2021年   184篇
  2020年   190篇
  2019年   124篇
  2018年   112篇
  2017年   152篇
  2016年   144篇
  2015年   169篇
  2014年   199篇
  2013年   261篇
  2012年   240篇
  2011年   223篇
  2010年   201篇
  2009年   177篇
  2008年   180篇
  2007年   178篇
  2006年   213篇
  2005年   157篇
  2004年   102篇
  2003年   82篇
  2002年   71篇
  2001年   52篇
  2000年   60篇
  1999年   40篇
  1998年   21篇
  1997年   26篇
  1996年   27篇
  1995年   16篇
  1994年   26篇
  1993年   19篇
  1992年   9篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
排序方式: 共有3985条查询结果,搜索用时 359 毫秒
261.
262.
六氯苯微生物降解研究进展   总被引:3,自引:0,他引:3  
微生物降解已经成为当前六氯苯环境污染治理研究的重点和前沿。介绍了六氯苯的结构、物理化学性质、来源及其危害,分析了其微生物降解的可行性,从降解菌群的来源、降解途径及降解的影响因素等方面,对六氯苯的微生物好氧降解和厌氧降解进行了系统地归纳和总结,同时对今后六氯苯微生物降解的研究方向进行了展望。  相似文献   
263.
改性甘蔗渣对Cu^2+和Zn^2+的吸附机理   总被引:1,自引:0,他引:1  
研究了均苯四甲酸二酐(PMDA)和乙二胺四乙酸二酐(EDTAD)改性甘蔗渣对重金属离子Cu^2+和Zn^2+的吸附性能,包括吸附动力学和吸附等温线。结果表明,改性后的甘蔗渣对重金属离子Cu^2+和Zn^2+的吸附容量有显著提高,对Cu^2+和Zn^2+吸附等温线均符合Langmuir方程,吸附为单分子层吸附。根据Langmuir方程,PMDA和EDTAD改性甘蔗渣对Cu^2+的吸附量分别为60.21和33.45mg/g,对Zn^2+的吸附量分别是70.53和36.53mg/g。两种改性甘蔗渣对两种金属离子的吸附在30min内均可完成,用准二级吸附动力学方程模拟动力学过程得到较好的线性相关性。以EDTA溶液为洗脱剂对吸附Cu^2+和Zn^2+的改性甘蔗渣进行洗脱再生,再生的吸附剂可反复使用。  相似文献   
264.
为提高湿式除尘装置对炭黑颗粒物的去除效率,通过向吸收液中添加复配表面活性剂以提高吸收液对炭黑的润湿性,投加絮凝剂使进入吸收液的炭黑颗粒发生凝聚和沉降,从而使吸收液得以循环利用。其中表面活性剂的复配以非离子表面活性剂月桂醇聚氧乙烯(9)醚(AEO-9)为主,与十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化胺(CTAB)和壬酚基聚氧乙烯醚(TX-10)分别复配,筛选出复配效果最好的一组复配液;然后投加絮凝剂,探讨絮凝剂的加入对吸收液中炭黑颗粒物絮凝沉降的影响。结果表明,在AEO-9浓度为0.05mmol/L,TX-10浓度为0.09mmol/L时,吸收液的表面张力最小,为36.75mN/m;投加无机絮凝剂聚合氯化铝(PAC)浓度为100mg/L时,经15min沉降,炭黑的沉降率可达88.1%,上清液中悬浮颗粒的平均粒径为6.36μm。  相似文献   
265.
LCD面板主要由附着偏光片及液晶等有机材料的玻璃面板构成。有机材料的去除及资源化利用是废LCD面板处理的第一步。在水热条件下对废LCD面板进行了降解产酸研究。研究考察了反应温度、反应时间、氧化剂用量、水用量及pH值等对水热产乙酸产率及选择性的影响。通过正交实验确定了水热产乙酸的最佳操作条件:反应温度325℃,反应时间5min,氧化剂(30%H2O2)0.6mL,用水量2mL,近中性环境(pH6-6.5去离子水)。此条件下,乙酸产率及选择性分别为68.83%及70.56%。结果表明,以废LCD面板有机材料为原料,采用水热技术进行产乙酸反应,可实现其资源化再利用。  相似文献   
266.
城市生活垃圾的成分及特性随着季节和人类在不同季节的生活习惯而变化,针对我国北方城市研究了一年中不同季节的城市生活垃圾成分特点,对影响厌氧发酵过程的相关成分如总有机碳(TOC)、总氮(TN)、蛋白质、脂肪和还原糖等进行了测定分析。通过厌氧消化实验,测得不同季节城市生活垃圾pH值、日产气量、沼气甲烷含量、甲烷累积量、挥发性脂肪酸(VFAs)和氧化还原电位(ORP)等参数的变化规律,分析相应变化的影响因素。结果表明,二、三季度的含水率分别为64.81%和67.50%,高于一、四季度,一季度发酵原料中蛋白质和脂肪含量分别为12.56%和8.86%,明显高于其他3个季度。一季度甲烷累积量最高,达到17616mL,单位发酵原料的产气量为204.8mL/g,也是4个季度中最高的,说明蛋白质、脂肪等有机成分含量对厌氧发酵过程及结果影响比较明显。为进一步的城市生活垃圾厌氧消化制取生物燃气的工艺条件提供依据。  相似文献   
267.
以地水中的氯代烃污染物三氯乙烯(TCE)为目标污染物,以过硫酸钾溶液为氧化剂,探讨了不同条件下过硫酸钾对TCE的去除效果。实验结果表明,在40℃,过硫酸钾初始浓度为2.43 g/L条件下,反应2 h后,TCE的去除率就可达到96.8%;过硫酸钾对TCE的去除符合一级反应动力学方程,速率常数(K)为1.3364 h-1,半衰期(t1/2)为0.51 h;过硫酸钾对TCE的去除速率在pH为中性附近时最大,其后无论pH升高或降低去除速率均减小;受温度和pH影响较明显,并且反应温度越高,受pH的影响越明显;随离子强度的增加而减小;反应活化能为119.6 kJ/mol;过硫酸钾溶于水生成过硫酸根离子(S2O28-),S2O28-会进一步生成硫酸根自由基(SO4-.),在碱性条件下,SO4-.与OH-反应会进一步生成羟基自由基(.OH)。过硫酸钾对于TCE的去除主要源自SO4-.和.OH的强氧化性。  相似文献   
268.
湿法净化黑烟中炭黑颗粒物的关键在于降低吸收液的表面张力并以高性能絮凝剂使其从溶液中絮凝、沉降以利于分离。选用十六烷基三甲基溴化胺(CTAB)为主要表面活性剂,使之与十二烷基苯磺酸钠(SDBS)和月桂醇聚氧乙烯(9)醚(AEO-9)进行复配实验,研究了复配液的表面张力,再向最低表面张力的复配表面活性剂溶液中投加絮凝剂聚合氯化铝(PAC)和聚丙烯酰胺(PAM),探讨絮凝剂的添加对黑烟颗粒沉降和絮凝的影响.实验结果表明:同时添加表面活性剂CTAB,SDBS和PAC,并使之浓度分别为0.5 mmol/L,0.4 mmol/L和200 mg/L时,炭黑颗粒的沉降效果最好,沉降率高达94%,且絮凝体较大,沉降时间仅为2 min。  相似文献   
269.
以废旧阴极射线管(CRT屏)为主要原料,混合碳粉作为发泡剂,硼砂为助熔剂、稳泡剂,利用烧结法制备出的板状泡沫玻璃是一种高性能无机建筑保温材料。利用TG-DSC-MS研究分析了CRT屏玻璃的热性能与发泡剂协同作用的关系。配合料被预先压制成板块状,然后在发泡温度下进行烧成。研究了发泡剂碳粉的含量、发泡温度和发泡时间与其结构、性能的关系。研究分析表明,以废CRT屏玻璃为主要原料、碳粉为发泡剂,将混合料压制成块,烧制出板状泡沫玻璃。其较佳的发泡温度为850℃、碳粉的最佳用量范围为0.3%~0.5%,较好的发泡时间为30 min。烧制的板状泡沫玻璃的密度为0.292 g/cm3。在相同的制备条件下,随着发泡温度的升高,气泡孔径也呈现增大趋势,孔壁也逐渐变薄。随着发泡时间逐渐增加,气孔的直径迅速增大,并有形成连通孔。  相似文献   
270.
利用污泥熟肥作为高含水率污泥堆肥调理剂   总被引:2,自引:0,他引:2  
采用静态强制通风好氧堆肥的方法,以木屑作为对比,考察了利用污泥熟肥作为调理剂对污泥堆肥过程的影响。结果表明,与以木屑作为调理剂的污泥堆体(对照组)相比,以污泥熟肥作为调理剂的污泥堆体(实验组)升温快,高温阶段(>50℃)持续时间长达10 d,满足粪便无害化卫生标准的要求,而对照组仅持续了2 d;实验组腐熟的堆肥含水率从60%降到39%,下降了21%,pH维持在7.5~8.5范围内,微生物活性较强,而对照组含水率仅下降15%,pH始终低于7.5;实验组种子发芽指数(GI)在第14天就回升到80%以上,基本上去除了植物毒性,而对照组GI在第22天才回升到50%。总体而言,污泥熟肥能显著改善堆肥中微生物的微环境,促进有机物的降解,缩短堆肥腐熟时间,是一种优质的调理剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号