首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   11篇
  国内免费   7篇
安全科学   31篇
废物处理   32篇
环保管理   165篇
综合类   54篇
基础理论   138篇
污染及防治   144篇
评价与监测   37篇
社会与环境   13篇
灾害及防治   3篇
  2023年   2篇
  2021年   5篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   16篇
  2015年   10篇
  2014年   8篇
  2013年   72篇
  2012年   16篇
  2011年   25篇
  2010年   29篇
  2009年   28篇
  2008年   23篇
  2007年   27篇
  2006年   34篇
  2005年   17篇
  2004年   20篇
  2003年   25篇
  2002年   20篇
  2001年   13篇
  2000年   12篇
  1999年   15篇
  1998年   16篇
  1997年   6篇
  1996年   16篇
  1995年   11篇
  1994年   16篇
  1993年   9篇
  1992年   4篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有617条查询结果,搜索用时 281 毫秒
591.
592.
Iron-carbon (Fe-C) composite microspheres prepared through a facile aerosol-based process are effective remediation agents for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Complete dechlorination was achieved for the class of chlorinated ethenes that include tetrachloroethylene (PCE), trichloroethylene (TCE), cis- and trans-1,2-dicloroethylene (c-DCE, t-DCE), 1,1-dichloroethylene (1,1-DCE) and, vinyl chloride (VC). The Fe-C particles potentially provides multi-functionality with requisite characteristics of adsorption, reaction, and transport for the effective in situ remediation of chlorinated hydrocarbons. The carbon support immobilizes the ferromagnetic iron nanoparticles onto its surface, thereby inhibiting aggregation. The adsorptive nature of the carbon support prevents the release of toxic intermediates such as the dichloroethylenes and vinyl chloride. The adsorption of chlorinated ethenes on the Fe-C composites is higher (>80%) than that of humic acid (<35%) and comparable to adsorption on commercial activated carbons (>90%). The aerosol-based process is an efficient method to prepare adsorptive-reactive composite particles in the optimal size range for transport through the porous media and as effective targeted delivery agents for the in situ remediation of soil and groundwater contaminants.  相似文献   
593.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   
594.
595.
In situ stabilization of Pb contaminated soils can be accomplished by adding P and Mn(IV) oxide. However, the long-term efficacy of in situ stabilization under continual P removal through plant growth is unknown. Moreover, the effects these treatments have on phytoavailability of other metals (Cd and Zn) commonly associated with Pb in soil are not well understood. Greenhouse experiments using sudax [Sorghum vulgare (L.) Moench] and Swiss chard [Beta vulgaris (L.) Koch] were carried out to evaluate the effects of plant growth on soil Pb bioavailability to humans after addition of P and other amendments, and the effects of these treatments on Pb, Cd, and Zn phytoavailability in three metal-contaminated soils. Eight treatments were used: zero P; 2500 mg of P as triple superphosphate (TSP); 5000 mg of P as TSP or phosphate rock (PR); 5000 mg of Mn oxide/kg; and combinations of Mn oxide and P as TSP or PR. The addition of P and/or Mn oxide significantly reduced bioavailable Pb, as measured by the physiologically based extraction test (PBET), in soils compared with the control even after extensive cropping. The PBET data also suggested that removal of P from soluble P sources by plants could negate the beneficial effects of P on bioavailable Pb, unless sufficient soluble P was added or soluble P was combined with Mn oxide. In general, Ph, Cd, and Zn concentrations in shoot tissues of sudax and Swiss chard were reduced significantly by TSP and did not change with the addition of PR. The combination of PR and Mn oxide significantly reduced Pb concentrations in plants compared with the control.  相似文献   
596.
Interest in plant nutrient issues for sustainable land application of residuals is increasingly driven by environmental concerns. The indicators of concern are P and N in surface waters, nitrate leaching, and emissions of ammonia and greenhouse gases. Federal regulations require residual application rates to be on a N basis at most, and on a P basis when risk of P loss in surface runoff is high. Modeling of mineralization offers the potential for more accurate determinations of potentially available nitrogen (PAN) and quick tests could allow the determination of PAN on residuals immediately before land application. Methods for reducing ammonia emissions from livestock operations and new techniques for quantifying emissions under field conditions are being developed. Calibration and validation of P loss assessment tools is an ongoing concern and the interpretation of edge of field P losses warrants further attention. The solubility of P in residuals and soils can be influenced by various amendments or treatment processes. High available P grains or phytase enzyme supplementation can reduce total and soluble P in animal manures by reducing the need for diet supplementation with inorganic P. The use of synchrotron-based X-ray absorption spectroscopy has identified chemical forms of inorganic P. Considerable progress has been made addressing plant nutrient issues for sustainable land application and interest in this topic will remain strong into the foreseeable future.  相似文献   
597.
To assist risk assessors at the Department of Energy’s Savannah River Site (SRS), a Geographic Information System (GIS) application was developed to provide relevant information about specific receptor species of resident wildlife that can be used for ecological risk assessment. Information was obtained from an extensive literature review of publications and reports on vertebrate- and contaminant-related research since 1954 and linked to a GIS. Although this GIS is a useful tool for risk assessors because the data quality is high, it does not describe the species’ site-wide spatial distribution or life history, which may be crucial when developing a risk assessment. Specific receptor species on the SRS were modeled to provide an estimate of an overall distribution (probability of being in an area). Each model is a stand-alone tool consisting of algorithms independent of the GIS data layers to which it is applied and therefore is dynamic and will respond to changes such as habitat disturbances and natural succession. This paper describes this modeling process and demonstrates how these resource selection models can then be used to produce spatially explicit exposure estimates. This approach is a template for other large federal facilities to establish a framework for site-specific risk assessments that use wildlife species as endpoints.Current address: Biology Department, University of South Dakota, Vermillion, SD 57069  相似文献   
598.
This study was conducted to determine the extent of Pb absorption into young rats (Rattus norvegicus var. Sprague-Dawley) fed untreated Pb-contaminated soil or Pb-contaminated soil treated with two different sources of P and P + Mn oxide. Data were compared from an in vitro, physiologically based extraction test (PBET) with the animal data to support the validity of the in vitro test to assess bioavailable Pb from a treated Pb-contaminated soil. Soil with a total Pb concentration of 2290 mg kg(-1) was used. Rats were fed 19 different test diets for 21 consecutive days. The test diets represented 95 g AIN93G rat meal kg(-1) diet with varying proportions of silica sand or soil to provide low, medium, or high doses of Pb from either Pb acetate, treated, or untreated soil. Blood, liver, kidney, and bone Pb concentrations were examined. For all four tissues, Pb concentrations for the Pb acetate groups were significantly higher than concentrations for all the soil groups. In general, either triple superphosphate (TSP) or phosphate rock (PR) treatments resulted in significant reductions in tissue Pb concentrations compared with untreated soil. Blood and kidney Pb concentrations for the PR + Mn oxide group were significantly lower than those of the PR group at the low and high doses. Relative bioavailability of Pb, as measured in all tissues, was significantly reduced when comparing untreated with amended soil. Correlation between the in vitro and in vivo tests, based on bone and liver tissue, showed that the in vitro test is successful at predicting Pb bioavailability.  相似文献   
599.
Activated sludge floc from a wastewater treatment system was characterized, with regard to principal structural, chemical, and microbiological components and properties, in relation to contaminant-colloid associations and settling. Multiscale analytical microscopies, in conjunction with multimethod sample preparations, were used correlatively to characterize diverse colloidal matrices within microbial floc. Transmission electron microscopy, in conjunction with energy dispersive spectroscopy (EDS), revealed specific associations of contaminant heavy metals with individual bacterial cells and with extracellular polymeric substances (EPS). Floc structure was mapped from the level of gross morphology down to the nano-scale, and flocs were described with respect to settling properties, size, shape, density, porosity, bound water content, and EPS chemical composition; gross surface properties were also measured for correlation with principal floc features. Compartmentalization results based on 171 EDS analyses and representative high-resolution images showed that nano-scale agglomerations of (i) silver (100%) and (ii) zinc (91%) were confined almost entirely to EPS matrices while (iii) Pb (100%) was confined to intracellular granules and (iv) aluminum was partitioned between EPS matrices (41%) and intracellular matrices (59%). The results suggest that engineered changes in microbial physiology and/or in macromolecular EPS composition may influence metal removal efficiencies.  相似文献   
600.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号