首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   16篇
  国内免费   21篇
安全科学   34篇
废物处理   39篇
环保管理   239篇
综合类   131篇
基础理论   208篇
环境理论   2篇
污染及防治   366篇
评价与监测   66篇
社会与环境   33篇
灾害及防治   4篇
  2023年   8篇
  2022年   14篇
  2021年   20篇
  2020年   5篇
  2019年   15篇
  2018年   20篇
  2017年   27篇
  2016年   28篇
  2015年   20篇
  2014年   31篇
  2013年   177篇
  2012年   45篇
  2011年   45篇
  2010年   48篇
  2009年   59篇
  2008年   47篇
  2007年   56篇
  2006年   69篇
  2005年   40篇
  2004年   31篇
  2003年   32篇
  2002年   35篇
  2001年   6篇
  2000年   15篇
  1999年   8篇
  1998年   4篇
  1997年   16篇
  1996年   6篇
  1995年   13篇
  1994年   14篇
  1993年   11篇
  1992年   11篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   10篇
  1982年   10篇
  1981年   14篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1972年   7篇
  1967年   4篇
排序方式: 共有1122条查询结果,搜索用时 203 毫秒
401.
The body of information presented in this paper is directed to those individuals concerned with the control of air pollution emissions which occur as a result of the operation of by-product coke plants. It describes a new process which represents a major change in the charging operation wherein preheated coal can be charged to coke ovens via a closed pipeline system thus replacing the conventional larry charging car and thereby eliminating air pollution estimated to be as much as 70% of the total emissions from coke oven operations. Coal is dried and preheated in a continuous fluidized bed process utilizing products of combustion of coke oven gas. The coal is recovered in conventional cyclone collectors and conveyed to the ovens via a new and novel pneumatic conveying system where the gas used is superheated steam. Jet energy repeatedly thrusts the coal upward and forward through the pipe, obtaining a high efficiency of transport of solids ten times that of conventional systems. Major advantages of the process demonstrated to date include (1) elimination of emissions from charging, (2) reduction of emission from pushing, (3) improved battery top working conditions, (4) increased oven productivity as much as 45%.  相似文献   
402.
403.
404.
A remote sequential air sampling unit has been developed which is compact, lightweight, and quite inexpensive. The sampling device contains a number of spring-loaded syringes which are released sequentially by the motion of a rotary mechanical timer. Field tests indicate that the sampling device can take accurate sequential air samples automatically and contain each sample without leakage for at least a period of 18 hours in an outdoor environment.  相似文献   
405.
The equilibrium composition of product gases from the combustion of chlorinated hydrocarbons (CHC) has been studied for varying ratios of C, H, Cl, and O under stoichiometric to fuel-rich conditions. An interactive, PC-compatible FORTRAN program, STANJAN, was utilized in conjunction with thermochemical data sources to calculate equilibrium compositions of gas mixtures as a function of temperature. The predicted results, when judiciously Interpreted, assist in the understanding of the potential for formation of residual organic substance emissions (ROSEs) in post-flame environments of an incinerator.

Arguments are presented for the potential formation of chlorinated species, which are stable at ambient temperature, if locally fuel-rich mixtures penetrate into the lower temperature zones of an incinerator. ROSEs that have been observed in field tests of incinerators burning chlorinated compounds are predicted to form under the fuel-rich condition. Furthermore, when the equivalence ratio is greater than unity by even a slight amount, the degree of chlorination of product gases increases markedly when the Cl/H ratio also exceeds unity. In that case, time, temperature, turbulence and an overall fuel-lean stoichiometry may not be sufficient to guarantee elimination of measurable levels of chlorinated products. Possible implications of the equilibrium calculations are discussed. Further systematic studies with additional CHCs, nitrogen?, sulfur?, and heavy metal-bearing compounds are recommended as well as continued efforts to carry out kinetic studies.  相似文献   
406.
Abstract

This paper presents the simulation and field evaluation results of two approaches to localize pollutant emission sources with open-path Fourier transform infrared (OPFTIR) spectroscopy. The first approach combined the plume’s peak location information reconstructed from the Smooth Basis Function Minimization (SBFM) algorithm and the wind direction data to calculate source projection lines. In the second approach, the plume’s peak location was determined with the Monte Carlo methodology by randomly sampling within the beam segment having the largest path-integrated concentration. We first conducted a series of simulation studies to investigate the sensitivity of using different basis functions in the SBFM algorithm. It was found that fitting with the beta and Weibull basis functions generally gave better estimates of the peak locations than with the normal basis function when the plumes were mainly within the OP-FTIR’s monitoring line. However, for plumes that were symmetric to the peak position or spread over the OP-FTIR, fitting with the normal basis function gave better performance. In the field experiment, two tracer gases were released simultaneously from two locations and the OP-FTIR collected data downwind from the sources with a maximum beam path length of 97 m. For the first approach, the release locations were within the 0.25- to 0.5-probability area only after the uncertainty of the peak locations was included in the calculation process. The second approach was easy to implement and still performed as satisfactorily as the first approach. The distances from the sources to the best-fit lines (i.e., the regression lines) of the estimated locations were smaller than 10 m.  相似文献   
407.
Abstract

An experimental design is described to estimate the fraction of secondary fine particle from the biogenic component of volatile organic compounds (VOCs) in the atmosphere using radiocarbon isotopic abundance ratios. The method distinguishes between “modern” carbon (C), and “old” C of primary and secondary origins based on three components, condensed-phase organic carbon (OC), semi-volatile particulate compounds (SVOCs), and VOCs. The method depends on interpretation of diurnal and seasonal variation in OC, SVOC, and VOC concentrations. Sampling employs a filter-denuder unit, which collects the three C components for isotopic analysis. The samples are collected repetitively for a daily sequence of the same hourly intervals covering diurnal periods with similar meteorological conditions. Collected C is thermally treated to separate OC from black carbon on filters and VOCs or SVOCs from adsorbents, with all four fractions individually oxidized to carbon dioxide to determine the radiocarbon content by accelerator mass spectrometry. Using C isotope abundance, the data are interpreted for fractions of primary modern C and secondary modern C as estimated from averaging diurnal and seasonal variations in the concentration data. As support for interpretation, samples of OC, SVOCs, and VOCs would be analyzed for speciation to identify source indicator species present.  相似文献   
408.
409.
Supplemental Materials: Supplemental materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association.   相似文献   
410.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号