首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   2篇
安全科学   2篇
废物处理   1篇
环保管理   5篇
综合类   8篇
基础理论   17篇
污染及防治   17篇
评价与监测   5篇
社会与环境   2篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   7篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1995年   2篇
  1994年   1篇
  1984年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
11.
A major goal of conservation biologists is to identify critical areas for the conservation of biological diversity and then strategically include them in an efficient system of reserves. In general, however, reserve networks have been selected for different objectives, and most countries lack an evaluation of their reserves' ability to represent a percentage of the national diversity. This paper evaluates the effectiveness of a network of reserves to represent the species of mammals in Mexico. The focus of the analyses is on species and site level, evaluating the representation of all terrestrial mammals in the 30 most important reserves. The representation of all species, endemic species, endangered species, and species with restricted distributions in the reserves was assessed and compared. Endemic or endangered species with restricted distributions were expected to be less represented in reserves than were widespread species. The most important reserves for the conservation of mammals were determined with the use of complementarity analyses. Priority sites for the representation of all the species currently absent from the reserve network were then selected. The results have broad applications for conservation. First, 82% of the mammal species from Mexico were represented in the reserve network, which covers a small portion (3.8%) of the country. Second, this percentage is certainly larger as several reserves were not evaluated due to a lack of data. A priority for a national conservation strategy could be to conduct biological surveys in those reserves lacking inventories to evaluate their contribution to conservation. Third, in spite of its demonstrated value, Mexico's reserve network can be improved by designating complementary areas. Additional priority sites, where reserves are required to represent most gap species in the network, were identified. Finally, it is clear that this reserve network has limitations for maintaining biodiversity and ecosystem services at regional scales. A comprehensive conservation strategy has, therefore, to incorporate mechanisms that enhance the value of human-dominated landscapes for the maintenance of biodiversity.  相似文献   
12.
13.
Transport of reactive solute in unsaturated soils under an infiltration-redistribution cycle is investigated. The study is based on the model of vertical flow and transport in the unsaturated zone proposed by Indelman et al. [J. Contam. Hydrol. 32 (1998) 77], and generalizes it by accounting for linear nonequilibrium kinetics. An exact analytical solution is derived for an irreversible desorption reaction. The transport of solute obeying linear kinetics is modeled by assuming equilibrium during the redistribution stage. The model which accounts for nonequilibrium during the infiltration and assumes equilibrium at the redistribution stage is termed partial equilibrium infiltration-redistribution model (PEIRM). It allows to derive approximate closed form solutions for transport in one-dimensional homogeneous soils. These solutions are further applied to computing the field-scale concentration by adopting the Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979) 461] column model. The effect of soil heterogeneity on the solute spread is investigated by modeling the hydraulic saturated conductivity as a random function of horizontal coordinates. The quality of the PEIRM is illustrated by calculating the critical values of the Damk?hler number which provide the achievable accuracy in estimating the solute mass in the mobile phase. The distinguishing feature of transport during the infiltration-redistribution cycle as compared to that of infiltration only is the finite depth of solute penetration. For irreversible desorption, the maximum solute penetration W/theta(r) is determined by the amount of applied water W and the residual water content theta(r). For sorption-desorption kinetics, the maximum depth of penetration z(r)(e, infinity ) also depends on the ratio between the rate of application and the column-saturated conductivity. It is shown that z(r)(e, infinity ) is bounded between the depths W/(theta(r)+K(d)) and W/theta(r) corresponding to the maximum solute penetration for equilibrium transport and for irreversible desorption, respectively. This feature of solute penetration explains the unusual phenomena of plume contraction after an initial period of spreading [Lessoff, S.C., Indelman, P., Dagan, G., 2002. Solute transport in infiltration-redistribution cycles in heterogeneous soils. In Raats, P.A.C., Smiles, D.,Warrick, A.W. (Eds), Environmental Mechanics: Water, Mass and Energy Transport in the Biosphere. American Geophysical Union, pp. 133-144]. Unlike transport under equilibrium conditions, when the solute is completely concentrated at the front, the solute under nonequilibrium conditions is spread out behind the front. Heterogeneity leads to additional spreading of the plume.  相似文献   
14.
Environmental Science and Pollution Research - Nutrient discharge into rivers and estuaries and the factors that control it need to be further understood to decrease the risk of harmful algae...  相似文献   
15.
Environmental Science and Pollution Research - Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the...  相似文献   
16.
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.  相似文献   
17.
Paper pulp manufacturing is the main non-food industrial utilization of plant biomass. Non-wood and agricultural residues are potential raw materials in the production of specialty papers. This chapter aims to quantify the environmental impacts associated with non-wood high quality paper pulp manufacture via soda-anthraquinone (AQ) cooking process by means of the application of LCA methodology in a cradle-to-gate analysis. Hemp (Cannabis sativa) and Flax (Linum usitatissimum) were evaluated as raw materials for the production of high quality non-porous pulp. A specialty paper pulp mill was analysed in detail and process chain was divided in six subsystems: agricultural activities, chemicals production, electricity production, transport, pulp production and waste treatment. Inventory data came from interviews and surveys (on-site measurements). When necessary, the data were completed with bibliographic resources.Abiotic resources depletion (AD), global warming (GW), ozone layer depletion (OLD), human toxicity (HT), ecotoxicity, photochemical oxidant formation (POF), acidification (A) and eutrophication (E) were the impact categories analysed in this study. According to the results, the environmental impact is mainly caused by the production of chemicals, electricity and fibres (agricultural activities) due to greenhouse gases emissions, phosphorous and nitrogen compounds emissions. The activities inside the pulp mill present minor contribution to almost all impact categories, excluding GW (15%) and E (6%) as well as OLD (25%). This study provides useful information for non-wood based industries related not only to pulp manufacture but also to panels or biorefineries with the aim of increasing their sustainability.  相似文献   
18.
19.
The Great American Biotic Interchange has been the predominant paradigm for explaining biotic diversification in the Nearctic/Neotropical overlap or Mexican Transition Zone, which is commonly explained by the collision of the North and South American continental plates, which began in the Oligocene and fused both landmasses. In the most far-reaching cladistic biogeographical analysis of the area to date, evidence has been found supporting the existence of a remnant Caribbean region extending from eastern Mexico to southeastern USA, a hypothesis that challenges current views of the Great American Biotic Interchange and the Mexican Transition Zone. We show herein that an older terrane, which has drifted to the present day positions of Yucatan and Cuba, may be biogeographically linked to an early ‘Gondwanan’ biota of the Paleocene (ca. 60 Ma). The evidence indicates an east–west biotic divide in Mexico, existing before the collision and formation of Central America. The south–north division of the country, previously recognized by several authors as associated with the Great American Biotic Interchange and the Mexican Transition Zone, is of a younger age. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号