首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   8篇
  国内免费   2篇
安全科学   1篇
废物处理   16篇
环保管理   88篇
综合类   44篇
基础理论   57篇
污染及防治   55篇
评价与监测   16篇
社会与环境   11篇
灾害及防治   2篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   12篇
  2014年   6篇
  2013年   24篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   11篇
  2008年   10篇
  2007年   31篇
  2006年   12篇
  2005年   15篇
  2004年   8篇
  2003年   13篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   8篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有290条查询结果,搜索用时 31 毫秒
101.
Temperature and mitochondrial plasticity are well studied in fishes, but little is known about this relationship in invertebrates. The effects of habitat temperature on mitochondrial ultrastructure were examined in three con-familial limpets from the Antarctic (Nacella concinna), New Zealand (Cellana ornata), and Singapore (Cellana radiata). The effects of seasonal changes in temperature were also examined in winter and summer C. ornata. Stereological methods showed that limpet pedal myocytes were 1–2 orders of magnitude smaller in diameter (≈3.5 μm) than in vertebrates, and that the diameter did not vary as a function of temperature. Mitochondrial volume density (Vv(mt,f)) was approximately 2–4 times higher in N. concinna (0.024) than in the other species (0.01 and 0.006), which were not significantly different from each other. Mitochondrial cristae surface density (Sv(im,mt)) was significantly lower in summer C. ornata (24.1 ± 0.50 μm2 μm−3) than both winter C. ornata (32.3 ± 0.95 μm2 μm−3) and N. concinna (34.3 ± 4.43 μm2 μm−3). The surface area of mitochondrial cristae per unit fibre volume was significantly higher in N. concinna, due largely to the greater mitochondrial volume density. These results and previous studies indicate that mitochondrial proliferation in the cold is a common, but not universal response by different species from different thermal habitats. Seasonal temperature decreases on the other hand, leading preferentially to an increase in cristae surface density. Stereological measures also showed that energetic reserves, i.e. lipid droplets and glycogen in the pedal muscle changed greatly with season and species. This was most likely related to gametogenesis and spawning.  相似文献   
102.
Abstract: The Whooping Crane ( Grus americana ) is an endangered bird that suffered a severe population bottleneck; only 14 adults survived in 1938. We assessed the genetic effect of this human-caused bottleneck by sequencing 314 base pairs ( bp) of the mitochondrial DNA control region from cranes that lived before, during, and after this bottleneck. The maximum length of DNA amplifiable from museum specimens was negatively correlated with age, and only 10 of 153 specimens yielded the entire 314 bp sequence. Six haplotypes were present among the prebottleneck individuals sequenced, and only one of these persists in the modern population. The most common modern haplotype was in low frequency in the prebottleneck population, which demonstrates the powerful effect of genetic drift in changing allele frequencies in very small populations. By combining all available data, we show that no more than one-third of the prebottleneck haplotypes survived the human-caused population bottleneck. High levels of variation of substitution rates among nucleotide sites prevented us from estimating the prebottleneck population size. Our data will be incorporated into the captive breeding program to allow better management decisions regarding the preservation of current genetic diversity. These data offer the first glimpse into the genetic toll this species has paid for human activities.  相似文献   
103.
Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival.  相似文献   
104.
Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin   总被引:1,自引:0,他引:1  
The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin’s fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.  相似文献   
105.
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition.  相似文献   
106.
The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.  相似文献   
107.
A new mathematical model has been developed that expresses the toxicities (EC50 values) of a wide variety of ionic liquids (ILs) towards the freshwater flea Daphnia magna by means of a quantitative structure-activity relationship (QSAR). The data were analyzed using summed contributions from the cations, their alkyl substituents and anions. The model employed multiple linear regression analysis with polynomial model using the MATLAB software. The model predicted IL toxicities with R2 = 0.974 and standard error of estimate of 0.028. This model affords a practical, cost-effective and convenient alternative to experimental ecotoxicological assessment of many ILs.  相似文献   
108.
The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity.  相似文献   
109.
Abstract

The U.S. Department of Defense-approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile (ICBM) motors, as well as the destruction of obsolete or otherwise unusable ICBM motors through open burn/open detonation (OB/OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of volatile organic compounds (VOCs). Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 81,374 lb without generating adverse noise levels within populated areas. In conjunction with collecting noise-monitoring data, air emissions were collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion-fixed gases, VOCs, and chlorides was monitored during the 81,374-lb NEW detonation event. Comparison of field measurements to predictions generated from the US Navy energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fire ball expanded, organic compounds, as well as CO, continued to oxidize as the combustion gases mixed with ambient air. VOC analysis of air samplers confirmed the presence of chloromethane, vinyl chloride, benzene, toluene, and 2-methyl-1-propene. Qualitative chloride analysis indicated that gaseous HCl was generated at low concentrations, if at all.  相似文献   
110.
Abstract

The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy’s energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and 2-methyl-1-propene, whereas the absence of hydrogen chloride gas suggested that free chlorine is not generated during the combustion process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号