首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1417篇
  免费   28篇
  国内免费   3篇
安全科学   57篇
废物处理   54篇
环保管理   284篇
综合类   126篇
基础理论   423篇
环境理论   1篇
污染及防治   333篇
评价与监测   89篇
社会与环境   70篇
灾害及防治   11篇
  2022年   8篇
  2021年   11篇
  2020年   16篇
  2019年   14篇
  2018年   26篇
  2017年   13篇
  2016年   50篇
  2015年   33篇
  2014年   35篇
  2013年   128篇
  2012年   38篇
  2011年   69篇
  2010年   51篇
  2009年   61篇
  2008年   58篇
  2007年   78篇
  2006年   61篇
  2005年   55篇
  2004年   41篇
  2003年   46篇
  2002年   48篇
  2001年   41篇
  2000年   28篇
  1999年   27篇
  1998年   18篇
  1997年   20篇
  1996年   21篇
  1995年   36篇
  1994年   19篇
  1993年   22篇
  1992年   13篇
  1991年   26篇
  1990年   19篇
  1989年   15篇
  1988年   9篇
  1987年   16篇
  1986年   15篇
  1985年   11篇
  1984年   25篇
  1983年   10篇
  1982年   14篇
  1981年   9篇
  1980年   9篇
  1979年   9篇
  1978年   6篇
  1977年   13篇
  1975年   9篇
  1974年   8篇
  1973年   5篇
  1971年   7篇
排序方式: 共有1448条查询结果,搜索用时 899 毫秒
301.
Endemic goitre was prevalent in the population of Derbyshire in the UK for many centuries until it declined from the 1930s. A contemporary medical survey showed that endemicity of goitre was particularly higher in the Carboniferous limestone areas of the Derbyshire-Peak District. Unlike classical goitrous areas of the world, where the distribution of goitre has been found to be related to the iodine content in the environment, there is no such relationship reported for the Derbyshire-Peak District area. The present study reviews the presence of endemic goitre in this area with reference to iodine in different environmental media using past and present data. In comparison with the world average values, the iodine contents in the soil and sediment in the Peak District are not deficient, but compared to England, Wales and Scotland averages, these levels are low. As no information on the mobility and bioavailability of iodine of this area is available, a cautious approach is necessary before any assumption is made on the aetiology of endemic goitre. The study also discusses some hypotheses relating to the possible cause of endemic goitre in the limestone areas. Further research needs are suggested depending on the land use and geochemistry of the Peak District to determine the underlying causes of the former endemic goitre in this area.  相似文献   
302.
The distribution and fate of14C-proline were investigated in immature tiger prawns,Penaeus esculentus Haswell, collected in Moreton Bay, Cleveland, Australia, by trawling during 1986/1987. Initially the prawns were fed14C-proline in food pellets to follow the pathway of proline absorption and distribution in the body.14C-proline was also injected directly into the prawn to provide sufficient tracer to follow the incorporation of14C into other amino acids and into proteins. A comparison was made of the metabolism of injected14C-proline over 48 h in prawns that had been fed and those that had been starved for 10 d. Free amino acids (FAA) in the muscle and protein-bound amino acids were analysed separately. Labelled proline was completely absorbed and distributed within the body 3 h after ingestion, about 80% being in the tissues, mostly in muscle. There was no significant difference between the total CO2 output in fed and starved prawns, but the latter metabolised about twice the amount of labelled proline over 48 h. At this time, in abdominal muscle of fed prawns, about 95% of the total muscle label was in the FAA; of the label in the FAA, 78% was proline and 18% glutamic acid, with the remainder in hydroxyproline, aspartic acid, glutamine, alanine and Kreb's cycle intermediates. In the starved prawns, proline was 58%, glutamic acid 24%, with correspondingly higher amounts in the other compounds. In the muscle protein, the distribution of label was similar in fed and starved prawns, with 72 to 74% as proline. The experiments showed that proline is not very labile in the tiger prawn and its rate of synthesis is slow. It does not appear to be an important source of energy as in some insects and cephalopods, but during starvation is only slowly oxidised for energy.  相似文献   
303.
An assessment of litter and detritus decomposition and nitrogen content of decomposing litter is presented for ten important seaweeds within a southern Strait of Georgia (British Columbia, Canada) seaweed community sampled from August 1975 until October 1976. Litter decomposition rates varied among species with the time required for litter to disappear from litter bags ranging from 6 d for the lamina of Nereocystis luetkeana to about 70 d for Fucus distichus. Decomposition was characterized by an accelerating increase in the nitrogen: dry weight ratio of remnant litter as decomposition proceeded. Iridaea cordata detritus decomposed most rapidly, at 5.7% d-1, while rates for Gigartina papillata, N. luetkeana, Laminaria saccharina and Laminaria groenlandica ranged from 1.8 to 3.6% d-1. The remaining species decomposed more slowly. There was a tendency toward more rapid decomposition with decreasing crude fibre content and detritus particle size; however, it appears that morphology, habitat and growth rate are also correlated with relative decomposition rates. Of 43 taxa identified within quantitative litter collections, F. distichus (41%), I. cordata (26%), N. luetkeana (27%) and Laminaria spp. (4%) accounted for 98% of total deposition with mean peak accumulation occurring in August and September from a low near zero in January and February. Litter distribution was patchy, with most litter decomposing near its place of deposition. The application of litter decomposition rates to measured litter accumulation in a mathematical simulation of decomposition predicted the rate of seaweed litter decomposition to peak at about 1.1 g AFDW (ash-free dry weight) m-2 d-1 in early September from a mid-winter low near zero. In total, 56±4% of decomposing litter formed detritus, with the remainder being released as soluble matter. The annual contribution of seaweed litter biomass to detrital pathways from our study site was calculated to be 152 g AFDW m-2.  相似文献   
304.
The temperate seagrass Zostera marina L. typically grows in highly reducing sediments. Photosynthesis-mediated O2 supplied to below-ground tissues sustains aerobic respiration during photosynthetic periods. Roots, however, experience daily periods of anoxia and/or hypoxia at night and under conditions that reduce photosynthesis. Rhizosphere cores of Z. marina were collected in August 1984 from Great Harbor, Massachusetts, USA. We examined short-term anaerobic metabolism of [U-14C]sucrose in excised roots and roots of intact plants. Under anaerobic conditions roots showed appreciable labeling of CO2, ethanol and lactate, and slight labeling of alanine and other metabolites. Over 95% of the 14C-ethanol was recovered in the root exudate. Release of other metabolites from the roots was minimal. Ethanol was also released from hypoxic/anoxic roots of intact plants and none of this ethanol was transported to the shoot under any experimental conditions. Loss of ethanol from roots prevented tissue levels of this phytotoxin from increasing during anaerobiosis despite increased synthesis of ethanol. Anaerobic metabolism of [U-14C]glutamate in excised roots led to appreciable labelling of -aminobutyrate, which was known to accumulate in eelgrass roots. Roots recovered to fully aerobic metabolism within 4 h after re-establishment of aerobic conditions. The contributions of these root metabolic responses to the ability of Z. marina to grow in reducing marine sediments are related to light-regulated interactions of shoots and roots that likely dictate depth penetration, distribution and ecological success of eelgrass.  相似文献   
305.
In situ respiration rates as a response to the odor of food were measured for two species of scavenging amphipods, Paralicella caperesca from 3 650 m in the western North Atlantic Ocean and Orchomene sp. B from 1 300 m in the Santa Catalina Basin off southern California (USA). In addition, complementary laboratory starvation/respiration rates for a shallow-water species, Orchomene sp. A, were determined. Initial elevated O2 consumption rates were found for up to 8 h in all deep-sea amphipods exposed to bait odor, followed by a period of lowered respiration equivalent to rates observed in individuals not exposed to bait. Orchomene sp. A revealed a response similar to that observed in the deep-sea species. A metabolic strategy is proposed whereby scavenging amphipods efficiently utilize large episodic organic falls in the food-limited environment of the deep sea. This strategy involves (1) the ability to withstand long periods of starvation, (2) rapid response to an organic fall, (3) rapid location of the organic fall, (4) maximal rate of food consumption with maximal quantity ingested, and (5) efficient utilization of the consumed food. Each of these attributes are explored with the expected and observed mechanisms employed to achieve them.  相似文献   
306.
Molecular systematic studies provide evidence for three new species of Bathymodiolus-like hydrothermal vent mussels (Bivalvia: Mytilidae) from relatively shallow waters (depth less than 750 m) associated with the Kermadec Arc off northern New Zealand. Mitochondrial COI sequences from the three putative new species differed substantially from those of other known bathymodiolin species from the Pacific and Indian Oceans. Population genetic analysis of one of these species (Bathymodiolus new species NZ-1) revealed heterogeneity in allozyme gene frequencies between samples collected from two seamounts about 50 km apart. Factors that might contribute to genetic differentiation between neighbouring seamounts are discussed.Communicated by M.S. Johnson, Crawley  相似文献   
307.
In situ measurements of community respiration were made at two stations in Castle Harbor, Bermuda, during April and May, 1971. Total community respiration was 20.67 and 19.11 ml O2 m-2 h-1 at Stations 1 and 2, respectively, in April. In May, respiration increased with water temperature to 26.99 and 24.56 ml O2 m-2 h-1. Significant differences (P<0.05) existed between stations and sampling periods. Bacterial respiration was estimated from sediment treatment with streptomycin-SO4. Values ranged from 7.71 to 8.72 ml O2 m-2 h-1 in April and May, respectively. No significant difference existed between sampling periods or stations. No detectable chemical O2 demand of the sediment, determined by a formalin treatment, was found. Total community respiration was further compartmentalized into macrofaunal, meiofaunal, and microfaunal-microfloral components. Both the macrofaunal and meiofaunal respiration was negligible compared to that estimated for the microfaunal-microfloral component.Contribution No. 2708 from the Woods Hole Oceanographic Institution, and Contribution No. 552 from the Bermuda Biology Station. This study was supported in part by National Science Foundation Grants GZ 1508 and GB 16161.  相似文献   
308.
It is now possible to divide particulate primary production into algal and heterotrophic components without physical separation. This depends on two innovations, the introduction of isotope in the form of labelled dissolved product(s) of primary production and the employment of a data analysis specifically designed for tracer kinetic incorporation experiments. The 14C technique described by Steemann Nielsen (1952) is inapplicable in the analyses of certain classes of systems and kinetic tracer incorporation experiments must be employed instead. We show that measurement of PDOC production rate requires such kinetic tracer analyses. Measurements made in the laboratory on water taken from 2 m depth in South West Arm of the Port Hacking estuary showed that: (1) the steady-state rate of PDOC production was 0.10 to 0.13 mg C.m-3.h-1; (2) the rate of PDOC incorporation into microheterotroph particulate organic carbon was 0.10 to 0.12 mg C.m-3.h-1; (3) the rate at which PDOC was respired to CO2 was 0.001 to 0.003 mg C.m-3.h-1. (4) the PDOC makes up only about 0.1% of the total dissolved organic carbon. The size class of particles associated with PDOC production differed from the size class responsible for uptake of PDOC. More than 50% of the PDOC production was associated with particles having a nominal diameter range of 20 to 63 m, while this fraction was responsible for <10% of the incorporation.  相似文献   
309.
“Natural” agglutinins against sperm have been considered to be broadly specific. However, the clumping of sperm from one species of sea urchin in hemolymph from the crab Cardisoma guanhumi, revealed a narrowly specific agglutinin. Additional testing could establish the taxonomic distribution of the reacting antigen.  相似文献   
310.
In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号