首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   6篇
  国内免费   8篇
安全科学   19篇
废物处理   71篇
环保管理   66篇
综合类   83篇
基础理论   226篇
环境理论   1篇
污染及防治   372篇
评价与监测   126篇
社会与环境   65篇
灾害及防治   3篇
  2023年   17篇
  2022年   44篇
  2021年   73篇
  2020年   33篇
  2019年   21篇
  2018年   45篇
  2017年   57篇
  2016年   63篇
  2015年   32篇
  2014年   55篇
  2013年   88篇
  2012年   56篇
  2011年   76篇
  2010年   55篇
  2009年   49篇
  2008年   41篇
  2007年   54篇
  2006年   40篇
  2005年   29篇
  2004年   16篇
  2003年   18篇
  2002年   19篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1968年   1篇
  1915年   1篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
81.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   
82.
Tin or stannous (Sn2+) compounds are used as catalysts, stabilizers in plastic industries, wood preservatives, agricultural biocides and nuclear medicine. In order to verify the Sn2+ up-take and toxicity in yeast cells we utilized a multi-elemental analysis known as particle-induced X-ray emission (PIXE) along with cell survival assays and quantitative real-time PCR. The detection of Sn2+ by PIXE was possible only in yeast cells in stationary phase of growth (STAT cells) that survive at 25 mM Sn2+ concentration. Yeast cells in exponential phase of growth (LOG cells) tolerate only micro-molar Sn2+ concentrations that result in intracellular concentration below of the method detection limit. Our PIXE analysis showed that STAT XV185-14c yeast cells demonstrate a significant loss of intracellular elements such as Mg, Zn, S, Fe and an increase in P levels after 1 h exposure to SnCl2. The survival assay showed enhanced tolerance of LOG yeast cells lacking the low-affinity iron and zinc transporters to stannous treatment, suggesting the possible involvement in Sn2+ uptake. Moreover, our qRT-PCR data showed that Sn2+ treatment could generate reactive oxygen species as it induces activation of many stress-response genes, including SOD1, YAP1, and APN1.  相似文献   
83.
The aim of this work is to assess the potential ecotoxicological effects of contaminated sediments treated with mineral additives. The Microtox solid phase test was used to evaluate the effect of mineral additives on the toxicity of sediment suspensions. Four Mediterranean port sediments were studied after dredging and bioremediation: Sample A from navy harbor, sample B from commercial port and samples C and D from pleasure ports. Sediment samples were stabilized with three mineral additives: hematite, zero-valent iron and zeolite. Results show that all studied mineral additives can act as stabilizer agent in highly contaminated sediments (A and C) by decreasing dissolved metal concentrations and sediment toxicity level. On the contrary, for the less contaminated samples (B and D) hematite and zeolite can provoke toxic effect towards Vibrio fischeri since additive particles can favor bacteria retention and decrease bioluminescence emission.  相似文献   
84.
Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22 °C, 27 °C and 30 °C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.  相似文献   
85.
To evaluate the genotoxic risk that contaminated sediment could constitute for benthic organisms, three contaminated (VA, VC and VN) and one uncontaminated (RN) sediment samples were collected in the Berre lagoon (France). Potentially bioavailable contaminants in sediments were obtained using sediment extraction with synthetic seawater adjusted to pH 4 or pH 6, simulating the range of pH prevailing in the digestive tract of benthic organisms. The genotoxic activities of these extracts were evaluated by three short-term bioassays: the Salmonella mutagenicity test using the Salmonella typhimurium strain TA102, the alkaline comet assay and the micronucleus assay on the Chinese Hamster Ovary cells CHO-K1. Results of the Salmonella mutagenicity assay detected a mutagenic response for RN extract at pH 6, and for VA extract at pH 4. Results of the comet and micronucleus assays detected low genotoxic/clastogenic activities for VA and VC extracts at pH 6 and higher activities for RN, VA and VC extracts at pH 4. To identify if metals (Al, Fe, Mn, As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were involved in these genotoxic activities, their concentrations were determined in the extracts, and their speciation was assessed by thermodynamic calculations. Results showed that extracts from sites VA, VC and VN generally presented the highest trace metal contents for both extractants, while the site RN presented lower trace metal contents but the highest Fe and Mn contents. Thermodynamic calculations indicated that Fe, Mn, As and in a lower extend Co, Ni and Zn were mainly present under free forms in extracts, and were consequently, more likely able to induce a genotoxic effect. Results globally showed no correspondence between free metal contents and genotoxic activities. They suggested that these positive results could be due to uncharacterized compounds, acting as direct genotoxic agents or enhancing the genotoxic properties of analyzed metals.  相似文献   
86.
Two assays were designed to obtain information about the influence of redox potential variations on barium mobility and bioavailability in soil. One assay was undertaken in leaching columns, and the other was conducted in pots cultivated with rice (Oryza sativa) using soil samples collected from the surface of Gleysol in both assays. Three doses of barium (100,300 mg kg−1 and 3000 mg kg−1-soil dry weight) and two redox potential values (oxidizing and reducing) were evaluated. During the incubation period, the redox potential (Eh) was monitored in columns and pots until values of −250 mV were reached. After the incubation period, geochemical partitioning was conducted on the barium using the European Communities Bureau of Reference (BCR) method. Rainfall of 200 mm d−1 was simulated in the columns and in the planting of rice seedlings in the pots. The results of the geochemical partitioning demonstrated that the condition of reduction favors increased barium concentrations in the more labile chemical forms and decreased levels in the chemical forms related to oxides. The highest barium concentrations in leached extracts (3.36 mg L−1) were observed at the highest dose and condition of reduction at approximately five times above the drinking water standard. The high concentrations of barium in the soil did not affect plant dry matter production. The highest levels and accumulation of barium in roots, leaves, and grains of rice were found at the highest dose and condition of reduction. These results demonstrate that reduction leads to solubilization of barium sulfate, thereby favoring greater mobility and bioavailability of this element.  相似文献   
87.
AT Lemos  MV Coronas  JA Rocha  VM Vargas 《Chemosphere》2012,89(9):1126-1134
Organisms in the environment are exposed to a mixture of pollutants. Therefore the purpose of this study was to analyze the mutagenicity of organic and inorganic responses in two fractions of particulates (TSP and PM2.5) and extracts (organic and aqueous). The mutagenicity of organic and aqueous particulate matter extracts from urban-industrial and urban-residential areas was evaluated by Salmonella/microsome assay, through the microsuspension method, using strain TA98 with and without liver metabolization. Additionally, strains YG1021 and YG1024 (nitro-sensitive) were used for organic extracts. Aqueous extracts presented negative responses for mutagenesis and cytotoxicity was detected in 50% of the samples. In these extracts the presence of potential bioavailable metals was identified. All organic extracts presented mutagens with a higher potential associated with PM2.5. This study presents a first characterization of PM2.5 in Brazil, through the Salmonella/microsome assay. The evaluation strategy detected the anthropic influence of groups of compounds characteristically found in urban and industrial areas, even in samples with PM values in accordance with quality standards. Thus, the use of a genotoxic approach in areas under different anthropic influences will favor the adoption of preventive measures in the health/environment relation.  相似文献   
88.

Introduction  

We report on the analysis of 4,4′-dichlorodiphenyltrichloroethane (4,4′-DDT) and its metabolites in thatch and branch samples constituting the wall materials of dwellings from South African subtropical areas. This approach was used to assess the exposure to DDT in the residents of the dwellings after indoor residual spraying (IRS) following recommended sanitation practices against malaria vectors.  相似文献   
89.
The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd2+ saline solution, nine vessels were doped with 2 mg/L Cd2+ saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.  相似文献   
90.
Numerous studies have shown the presence of pharmaceutically active compounds (PhACs) in different environmental compartments, for example, in surface water or wastewater ranging from nanograms per litre to micrograms per litre. Likewise, some recent studies have pointed to seasonal variability, thus indicating that PhAcs concentrations in the aquatic environment may depend on the time of year. This work intended to find out (1) whether Tagus fluvial and drinking water were polluted with different groups of PhACs and (2) if their concentrations differed between winter and summer seasons. From the 58 substances analysed, 41 were found belonging to the main therapeutic groups. Statistical differences were seen for antibacterials, antidepressants, anxiolytics, antiepileptics, and cardiovascular drugs, with higher concentrations being detected in winter than in summer. These results might indicate that the PhACs analysed in this study undergo lower environmental degradation in winter than in summer. In order to confirm these initial results, a continuous monitoring should be performed especially on those PhACs that either because of an elevated consumption or an intrinsic chemical persistence are poorly degraded during winter months due to low temperatures and solar irradiation. It is especially important to identify which of these specific PhACs are in order to recommend their substitution by equally effective and safe substances but also environmentally friendly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号