首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   2篇
  国内免费   6篇
安全科学   16篇
废物处理   29篇
环保管理   62篇
综合类   41篇
基础理论   70篇
环境理论   1篇
污染及防治   155篇
评价与监测   69篇
社会与环境   16篇
灾害及防治   1篇
  2023年   8篇
  2022年   34篇
  2021年   17篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   9篇
  2014年   25篇
  2013年   58篇
  2012年   26篇
  2011年   19篇
  2010年   18篇
  2009年   15篇
  2008年   20篇
  2007年   22篇
  2006年   19篇
  2005年   23篇
  2004年   14篇
  2003年   8篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1992年   2篇
  1988年   2篇
  1987年   2篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
  1963年   1篇
  1962年   2篇
  1959年   2篇
  1958年   1篇
  1956年   2篇
  1955年   2篇
排序方式: 共有460条查询结果,搜索用时 859 毫秒
361.
This report describes a simple chemical free method that was successfully used by a team of European and Indian scientists (www.qub.ac.uk/tipot) to remove arsenic (As) from groundwater in a village in West Bengal, India. Six such plants are now in operation and are being used to supply water to the local population (www.insituarsenic.org). The study was conducted in Kasimpore, a village in North 24 Parganas District, approximately 25 km from Kolkata. In all cases, total As in treated water was less than the WHO guideline value of 10 μg L−1. The plant produces no sludge and the operation cost is 1.0 US$ per day for producing 2000 L of potable water.  相似文献   
362.
Antibiotic uptake by plants from soil fertilized with animal manure   总被引:19,自引:0,他引:19  
Antibiotics are commonly added to animal feed as supplements to promote growth of food animals. However, absorption of antibiotics in the animal gut is not complete and as a result substantial amounts of antibiotics are excreted in urine and feces that end up in manure. Manure is used worldwide not only as a source of plant nutrients but also as a source of organic matter to improve soil quality especially in organic and sustainable agriculture. Greenhouse studies were conducted to determine whether or not plants grown in manure-applied soil absorb antibiotics present in manure. The test crops were corn (Zea mays L.), green onion (Allium cepa L.), and cabbage (Brassica oleracea L. Capitata group). All three crops absorbed chlortetracycline but not tylosin. The concentrations of chlortetracycline in plant tissues were small (2-17 ng g(-1) fresh weight), but these concentrations increased with increasing amount of antibiotics present in the manure. This study points out the potential human health risks associated with consumption of fresh vegetables grown in soil amended with antibiotic laden manures. The risks may be higher for people who are allergic to antibiotics and there is also the possibility of enhanced antimicrobial resistance as a result of human consumption of these vegetables.  相似文献   
363.
Atmospheric dry deposition to leaf surfaces at a rural site of India   总被引:1,自引:0,他引:1  
Dry deposition flux of major ions (Na+, K+, Ca2+, Mg2+, NH4+, F-, Cl-, NO3- and SO4(2-) to natural surfaces [guava (Psidium guyava) and peepal (Ficus religiosa) leaves] are determined at Rampur, a rural site of semi-arid region of India. Dry deposition flux is the highest for Ca2+ on guava leaves and for NH4+ on peepal leaves. Overall dry deposition flux is higher on guava leaves than of peepal leaves. The variation in deposition flux may be due to surface characteristics (surface roughness) and arrangement of leaves. Peepal leaves are arranged along the axis of the stem, whereas guava leaves are at right angles to the stem. The deposition flux of cations contributes 66% and 76% of dry deposition of all major ions on guava and peepal leaves, respectively as soil is major contributor towards dry deposition flux in tropical regions. ANOVA revealed no significant seasonal difference in deposition, although there is a trend for higher in winter. Deposition velocities of NH4+, NO3- and SO4(2-) are greater on guava leaves than peepal leaves, which can be attributed to the rougher surface of the guava leaf.  相似文献   
364.
Variations occurred in the growth, assimilate partitioning, chlorophyll content, stem anatomy and leaf cuticular traits of Euphorbia hirta L. on long-term exposure to coal-smoke pollutants prevailing at two sites, one situated close to a railway loco shed (site B) and another in the vicinity of a thermal power plant (site C). The Botanical Garden of Aligarh Muslim University, Aligarh, was considered as a control site (A). Site C possessed a greater load of coal-smoke pollutants than site B. The present study had shown that coal-smoke pollutants have led to a decrease in plant height, jeopardised the production of leaves and enhanced their fall, and caused a reduction in leaf area, leading to decreases of the total photosynthetic area of the plants, with increasing pollution load. The losses incurred in chlorophyll a were relatively more than chlorophyll b and, as a result, the total chlorophyll contents of leaves were decreased in polluted plants. The dry weights of stems, roots and leaves were decreased to different degrees, whereas the shoot/root dry weight ratio was found to increase in the polluted environment. The growth of stem cortex and pith were slightly affected on site B, but showed significant decreases on site C, due to a greater load of pollutants. Decreased area of xylem tissue was found to couple with an increasing number of vessels of reduced sizes. The stomatal density, pore size and index showed decreases, while the epidermal cells were larger and trichomes longer, on both surfaces of polluted leaves.  相似文献   
365.
Environment, Development and Sustainability - Many stakeholders in agro-food industry are concerned about sustainability, especially in addressing post-harvest loss (PHL). However, resources...  相似文献   
366.
367.
Journal of Material Cycles and Waste Management - Effective management of Municipal Solid Waste (MSW) is an essential function of the city municipal corporation. The present study reports on the...  相似文献   
368.

Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.

  相似文献   
369.
Subsurface solute transport through structured soil is studied by model interpretation of experimental breakthrough curves from tritium and phosphorus tracer tests in three intact soil monoliths. Similar geochemical conditions, with nearly neutral pH, were maintained in all the experiments. Observed transport differences for the same tracer are thus mainly due to differences in the physical transport process between the different monoliths. The modelling is based on a probabilistic Lagrangian approach that decouples physical and chemical mass transfer and transformation processes from pure and stochastic advection. Thereby, it enables explicit quantification of the physical transport process through preferential flow paths, honouring all independently available experimental information. Modelling of the tritium breakthrough curves yields a probability density function of non-reactive solute travel time that is coupled with a reaction model for linear, non-equilibrium sorption–desorption to describe the phosphorus transport. The tritium model results indicate that significant preferential flow occurs in all the experimental soil monoliths, ranging from 60–100% of the total water flow moving through only 25–40% of the total water content. In agreement with the fact that geochemical conditions were similar in all experiments, phosphorus model results yield consistent first-order kinetic parameter values for the sorption–desorption process in two of the three soil monoliths; phosphorus transport through the third monolith cannot be modelled because the apparent mean transport rate of phosphorus is anomalously rapid relative to the non-adsorptive tritium transport. The occurrence of preferential flow alters the whole shape of the phosphorus breakthrough curve, not least the peak mass flux and concentration values, and increases the transported phosphorus mass by 2–3 times relative to the estimated mass transport without preferential flow in the two modelled monoliths.  相似文献   
370.

Purpose  

The term “phytotechnologies” refers to the application of science and engineering to provide solutions involving plants, including phytoremediation options using plants and associated microbes to remediate environmental compartments contaminated by trace elements (TE) and organic xenobiotics (OX). An extended knowledge of the uptake, translocation, storage, and detoxification mechanisms in plants, of the interactions with microorganisms, and of the use of “omic” technologies (functional genomics, proteomics, and metabolomics), combined with genetic analysis and plant improvement, is essential to understand the fate of contaminants in plants and food, nonfood and technical crops. The integration of physicochemical and biological understanding allows the optimization of these properties of plants, making phytotechnologies more economically and socially attractive, decreasing the level and transfer of contaminants along the food chain and augmenting the content of essential minerals in food crops. This review will disseminate experience gained between 2004 and 2009 by three working groups of COST Action 859 on the uptake, detoxification, and sequestration of pollutants by plants and consequences for food safety. Gaps between scientific approaches and lack of understanding are examined to suggest further research and to clarify the current state-of-the-art for potential end-users of such green options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号