首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17251篇
  免费   142篇
  国内免费   113篇
安全科学   406篇
废物处理   652篇
环保管理   1906篇
综合类   5324篇
基础理论   3569篇
环境理论   2篇
污染及防治   4093篇
评价与监测   877篇
社会与环境   616篇
灾害及防治   61篇
  2018年   200篇
  2017年   188篇
  2016年   285篇
  2015年   216篇
  2014年   317篇
  2013年   1155篇
  2012年   369篇
  2011年   517篇
  2010年   493篇
  2009年   554篇
  2008年   573篇
  2007年   596篇
  2006年   526篇
  2005年   465篇
  2004年   501篇
  2003年   459篇
  2002年   436篇
  2001年   617篇
  2000年   412篇
  1999年   282篇
  1998年   203篇
  1997年   195篇
  1996年   193篇
  1995年   230篇
  1994年   242篇
  1993年   206篇
  1992年   223篇
  1991年   231篇
  1990年   253篇
  1989年   229篇
  1988年   181篇
  1987年   180篇
  1986年   180篇
  1985年   180篇
  1984年   199篇
  1983年   187篇
  1982年   195篇
  1981年   207篇
  1980年   169篇
  1979年   180篇
  1978年   147篇
  1977年   139篇
  1974年   147篇
  1973年   146篇
  1968年   156篇
  1967年   184篇
  1966年   154篇
  1965年   148篇
  1964年   151篇
  1963年   139篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
481.
Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.  相似文献   
482.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   
483.
Releases of ammonia (NH3) to the atmosphere contribute significantly to the deposition of nitrogen to both terrestrial and aquatic ecosystems. This is the background for the national NH3 emission ceilings in Europe. However, in some countries the national legislation aims not only to meet these ceilings but also to reduce the atmospheric nitrogen deposition to local ecosystems. Such measures to reduce the load of nitrogen to local ecosystems were introduced in Denmark in 1994. In this paper we demonstrate that this regulation is reflected in the NH3 concentrations in Denmark. The Danish legislation forces farmers to applying manure to the fields during the crop-growing season. We have analyzed the seasonal variation in local NH3 concentrations over the time period of 1989-2003. During this period the seasonal variation has changed from having moderate spring and autumn concentration peaks to having a single and much more pronounced spring peak. In the analysis we apply an NH3 emission model to demonstrate that these changes in the seasonal variation are a result of the changes in the Danish legislation. The analysis demonstrates the strength of using a high-resolution emission model in the analysis of routine monitoring data.  相似文献   
484.
Simultaneous size distributions and Fourier transform infrared (FTIR) extinction spectra have been measured for several representative components of mineral dust aerosol (quartz, calcite, and dolomite) in the fine particle size mode (D=0.1–1 μm). Optical constants drawn from the published literature have been used in combination with the experimentally determined size distributions to simulate the extinction spectra. In general, Mie theory does not accurately reproduce the peak position or band shape for the prominent IR resonance features in the 800–1600 cm−1 spectral range. The resonance peaks in the Mie simulation are consistently blue shifted relative to the experimental spectra by 20–50 cm−1. Spectral simulations, derived from a simple Rayleigh-based analytic theory for a “continuous distribution of ellipsoids” particle shape model, better reproduce the experimental spectra, despite the fact that the Rayleigh approximation is not strictly satisfied in these experiments. These results differ from our previous studies of particle shape effects in silicate clay mineral dust aerosols where a disk-shaped model for the particles was found to be more appropriate.  相似文献   
485.
Windblown dust is known to impede visibility, deteriorate air quality and modify the radiation budget. Arid and semiarid areas with unpaved and unvegetated land cover are particularly prone to windblown dust, which is often attributed to high particulate matter (PM) pollution in such areas. Yet, windblown dust is poorly represented in existing regulatory air quality models. In a study by the authors on modeling episodic high PM events along the US/Mexico border using the state-of-the-art CMAQ/MM5/SMOKE air quality modeling system [Choi, Y.-J., Hyde, P., Fernando, H.J.S., 2006. Modeling of episodic particulate matter events using a 3D air quality model with fine grid: applications to a pair of cities in the US/Mexico border. Atmospheric Environment 40, 5181–5201], some of the observed PM10 NAAQS exceedances were inferred as due to windblown dust, but the modeling system was incapable of dealing with time-dependent episodic dust entrainment during high wind periods. In this paper, a time-dependent entrainment parameterization for windblown dust is implemented in the CMAQ/MM5/SMOKE modeling system with the hope of improving PM predictions. An approach for realizing windblown dust emission flux for each grid cell over the study domain on an hourly basis, which accounts for the influence of factors such as soil moisture content, atmospheric stability and wind speed, is presented in detail. Comparison of model predictions with observational data taken at a pair of US/Mexico border towns shows a clear improvement of model performance upon implementation of the dust emission flux parameterization.  相似文献   
486.
Sulphur cycling and its correlation to removal processes under dynamic redox conditions in the rhizosphere of helophytes in treatment wetlands are poorly understood. Therefore, long-term experiments were performed in laboratory-scale constructed wetlands treating artificial domestic wastewater in order to investigate the dynamics of sulphur compounds, the responses of plants and nitrifying microorganisms under carbon surplus conditions, and the generation of methane. For carbon surplus conditions (carbon:sulphate of 2.8:1) sulphate reduction happened but was repressed, in contrast to unplanted filters mentioned in literature. Doubling the carbon load caused stable and efficient sulphate reduction, rising of pH, increasing enrichment of S(2-) and S(0) in pore water, and finally plant death and inhibition of nitrification by sulphide toxicity. The data show a clear correlation of the occurrence of reduced S-species with decreasing C and N removal performance and plant viability in the experimental constructed wetlands.  相似文献   
487.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
488.
In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (−40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3 and SO42− have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.  相似文献   
489.
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.  相似文献   
490.
Li Z  Kirk Jones H  Zhang P  Bowman RS 《Chemosphere》2007,68(10):1861-1866
Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated or treated with the cationic surfactant hexadecyltrimethylammonium (HDTMA), was studied at different flow rates. In the presence of sorbed HDTMA, the chromate retardation factor increased by a factor of five and the pseudo first-order rate constant for chromate reduction increased by 1.5-5 times. The increase in rate constant from the column studies was comparable to a six-fold increase in the rate constant determined in a batch study. At a fast flow rate, the apparent delay in chromate breakthrough from the HDTMA modified Z/ZVI columns was primarily caused by the increase in chromate reduction rate constant. In contrast, at a slower flow rate, the retardation in chromate transport from the HDTMA modified Z/ZVI columns mainly originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence of immobile water was responsible for the earlier breakthrough of chromate in columns packed with zeolite and Z/ZVI pellets. The results from this study further confirm the role of HDTMA in enhancing sorption and reduction efficiency of contaminants in groundwater remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号