首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22774篇
  免费   146篇
  国内免费   117篇
安全科学   411篇
废物处理   921篇
环保管理   2651篇
综合类   5811篇
基础理论   5513篇
环境理论   2篇
污染及防治   4790篇
评价与监测   1354篇
社会与环境   1522篇
灾害及防治   62篇
  2022年   163篇
  2018年   756篇
  2017年   703篇
  2016年   717篇
  2015年   279篇
  2014年   348篇
  2013年   1203篇
  2012年   598篇
  2011年   1249篇
  2010年   905篇
  2009年   1014篇
  2008年   1184篇
  2007年   1436篇
  2006年   543篇
  2005年   566篇
  2004年   541篇
  2003年   554篇
  2002年   568篇
  2001年   637篇
  2000年   424篇
  1999年   291篇
  1998年   226篇
  1997年   196篇
  1996年   195篇
  1995年   232篇
  1994年   245篇
  1993年   206篇
  1992年   227篇
  1991年   232篇
  1990年   253篇
  1989年   231篇
  1988年   181篇
  1987年   180篇
  1986年   180篇
  1985年   180篇
  1984年   210篇
  1983年   190篇
  1982年   195篇
  1981年   207篇
  1980年   170篇
  1979年   180篇
  1978年   148篇
  1974年   148篇
  1973年   147篇
  1968年   156篇
  1967年   184篇
  1966年   155篇
  1965年   148篇
  1964年   152篇
  1963年   139篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
942.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   
943.
Journal of Material Cycles and Waste Management - The amount of biomass-derived ashes is expected to rise in the EU due to targets to increase the use of renewable energy resources. To promote the...  相似文献   
944.
This study investigated the application of bamboo as a natural composite, in which its potential as a composite material had been examined for 2–6 layers. In precise, the woven bamboo (BW) formed the culm fiber composite with an average of 0.5 mm thickness and 5.0 mm width strip. In addition, this study looked into a specific type of bamboo species known as Gigantochloa Scortechinii (Buluh Semantan), which can be found in Malaysia. This laminated plain BW, which had been reinforced with epoxy (EP), was developed by applying the hand lay-up technique. After that, the specimens were characterized via mechanical analyses, for instance, tensile, flexural, hardness, and impact tests. As a result, the 2-layer BW had displayed rather excellent results chiefly due to the incorporation of epoxy composite, although this is exceptional hardness value.  相似文献   
945.
Journal of Material Cycles and Waste Management - Material flow analysis (MFA) is a well-established tool for supporting decisions on nutrient management. This paper shows the importance of the...  相似文献   
946.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
947.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
948.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   
949.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号