The development of process-based models to estimate ammonia emissions from animal feeding operations (AFOSs) is sought to replace costly and time-consuming direct measurements. Critical to process-based model development is conducting sensitivity analysis to determine the input parameters and their interactions that contribute most to the variance of the model output. Global and relative sensitivity analyses were applied to a process-based model for predicting ammonia emissions from the surface of anaerobic lagoons for treating and storing manure. The objectives were to compare global sensitivity analysis (GSA) to relative (local) sensitivity analysis (RSA) on a process-based model for ammonia emissions. Based on the first-order coefficient, both GSA and RSA showed the model input parameters in order of importance in process model for ammonia emissions from lagoon surfaces were: (i) pH, (ii) lagoon liquid temperature, (iii) wind speed above the lagoon surface, and (iv) the concentration of ammoniacal nitrogen in the lagoon. The GSA revealed that interactions between model parameters accounted for over two-thirds of the model variance, a result that cannot be achieved using traditional RSA. Also, the GSA showed that parameter interactions involving liquid pH had more impact on the model output variance than the single parameters: (i) temperature, (ii) wind speed, or (iii) total ammoniacal nitrogen. This study demonstrates that GSA provides a more complete analysis of model input parameters and their interactions on the model output compared to RSA. A comprehensive tutorial regarding the application of GSA to a process model is presented. 相似文献
We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2-N and NO3-N by bacterioplankton. Finally, NH4+-N was exhausted and NO3-N was denitrified to NO2-N, while the accumulation of NO2-N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria(to denitrify NO2-N to N2)would improve the water quality. PCR-DGGE and sequencing results showed that more than 1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efciencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplankton significantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems. 相似文献
It is important to screen strains that can decompose polycyclic aromatic hydrocarbons (PAHs) completely and rapidly with good adaptability for bioremediation in a local area. A bacterial strain JM2, which uses phenanthrene as its sole carbon source, was isolated from the active sewage sludge from a chemical plant in Jilin, China and identified as Pseudomonas based on 16S rDNA gene sequence analysis. Although the optimal growth conditions were determined to be pH 6.0 and 37℃, JM2 showed a broad pH and temperature profile. At pH 4.5 and 9.3, JM2 could degrade more than 40% of fluorene and phenanthrene (50 mg/L each) within 4 days. In addition, when the temperature was as low as 4℃, JM2 could degrade up to 24% fluorene and 12% phenanthrene. This showed the potential for JM2 to be applied in bioremediation over winter or in cold regions. Moreover, a nutrient augmentation study showed that adding formate into media could promote PAH degradation, while the supplement of salicylate had an inhibitive effect. Furthermore, in a metabolic pathway study, salicylate, phthalic acid, and 9-fluorenone were detected during the degradation of fluorene or phenanthrene. In conclusion, Pseudomonas sp. JM2 is a high performance strain in the degradation of fluorene and phenanthrene under extreme pH and temperature conditions. It might be useful in the bioremediation of PAHs. 相似文献
In tropical areas, pioneer occupation fronts steer the rapid expansion of deforestation, contributing to carbon emissions. Up-to-date carbon emission estimates covering the long-term development of such frontiers depend on the availability of high spatial–temporal resolution data. In this paper, we provide a detailed assessment of carbon losses from deforestation and potential forest degradation from fragmentation for one expanding frontier in the Brazilian Amazon. We focused on one of the Amazonia’s hot-spots of forest loss, the BR-163 highway that connects the high productivity agricultural landscapes in Mato Grosso with the exporting harbors of the Amazon. We used multi-decadal (1984–2012) Landsat-based time series on forested and non-forested area in combination with a carbon book-keeping model. We show a 36% reduction in 1984s biomass carbon stocks, which led to the emission of 611.5 TgCO2 between 1985 and 1998 (43.6 TgCO2 year−1) and 959.8 TgCO2 over 1999–2012 (68.5 TgCO2 year−1). Overall, fragmentation-related carbon losses represented 1.88% of total emissions by 2012, with an increasing relevance since 2004. We compared the Brazilian Space Agency deforestation assessment (PRODES) with our data and found that small deforestation polygons not captured by PRODES had increasing importance on estimated deforestation carbon losses since 2000. The comparative analysis improved the understanding of data-source-related uncertainties on carbon estimates and indicated disagreement areas between datasets that could be subject of future research. Furthermore, spatially explicit, annual deforestation and emission estimates like the ones derived from this study are important for setting regional baselines for REDD+ or similar payment for ecosystem services frameworks.
Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.
This paper investigates multi-stakeholder arrangements initiated by businesses and NGOs from the North that aim to enhance a more sustainable agricultural production at specific localities in Southern countries. We aim to better understand the search for concerted action in multi-actor arrangements. Therefore, this paper presents a diagnostic framework with three strategic challenges the partnership projects are facing: linking global economic objectives to local needs, values and interests; bridging public and private interests and responsibilities; and seeking trade-offs between social, environmental and economic values. Starting from the partnerships’ Theory of Change, this diagnostic framework is applied to comparative case studies of partnership projects in the cocoa sector in Indonesia, which are part of a Northern-based public–private partnership to improve farmers’ prospective. It is concluded that the economic reality faced by the farmers differs from that of the Northern actors; collaboration with governments is difficult because of different organizational cultures; and the partnership projects underestimate the strength of vested social relations the smallholders are part of. Overall, the initiators of the partnerships seem to work with a too restricted economic interpretation of the local reality. 相似文献
This study examined the influencing factors of the self-reported behavioral intentions toward genetically modified (GM) crops using a multi-stakeholder approach in the Khuzestan Province in Southwest Iran. The study focused on three different groups, including: “agricultural students,” “agricultural private firms’ managers” and “rich-resource farmers.” Data were collected using a researcher-made questionnaire and was analyzed by SPSS (V20) and AMOS (V20). Results indicated that the respondents perceive more benefits than risks for GM crops and that the perception of benefits and risks, respectively, had positive and negative impacts on the self-reported behavioral intention of the respondents. The knowledge of the respondents regarding these crops had positive impacts on perception of benefits. The results showed that both managers and students worried about the food safety and impact of GM crops on human health while farmers worried about the environmental risks of GM crops. The results also revealed that those who are the most conscious about GM crops are more trusted. The findings also showed that the majority of the respondents hold a positive view of the potential of GM crops. 相似文献
The aim of the study is to assess the agricultural drought risk condition in the context of global climate change in the western part of Bangladesh that covers about 45% area of the country for the period of 1960–2011. Drought Index (DI) and Drought Hazard Index (DHI) have been calculated by Markov Chain analysis and that of Drought Vulnerability Index (DVI) from socioeconomic and physical indicators. The DI values show that the northern part in general is more drought-prone, having less crops prospect, whereas the southern part is less drought-prone with high crop potentiality. The probability of extreme drought occurrence increases in recent decades in some parts as a result the drought events become more frequent in the areas. The DHI ranges from 15 to 32, and northern part suffers from more extreme drought hazards than that of southern part. DVI also indicates that northern part is exposed to high to very high drought vulnerability as higher percentage of illiterate people are involved in agricultural practices and high percentage of irrigation to cultivable land, but southern part exposed to moderate to low vulnerability because of low values of vulnerability indicators. Finally, agricultural drought exists at high risk condition in northern part and low in southern parts and 21.63, 26.54 and 29.68% of the area poses very high, high and moderate risk, respectively. So, immediate adaptation measures are needed keeping in mind climate features like rainfall and temperature variability, drought risk and risk ranking to make viable adaptation measures. 相似文献
Prawn aquaculture industry is one of the developing economic activities in the Philippines. Generally, a wide range of microalgae typically grow and proliferate in many aquaculture ponds. However, certain species of microalgae have the ability to form harmful algal blooms (HABs) which often bring damaging consequences to the aquaculture industry, food safety, and the environment. The study aims to identify and characterize the composition of microalgae (particularly Cyanophyta) that are capable of forming HABs in selected freshwater prawn culture ponds in Central Luzon, Philippines, using morphological, ultrastructural, and molecular characterizations. From water samples collected in ten selected ponds across Central Luzon (Bulacan, Nueva Ecija, Pampanga, Tarlac, and Zambales), potential HAB formers such as Oscillatoria agardhii, O. princeps, Microcystis aeruginosa, and M. wesenbergii were observed to have occurred mostly, while Anabaena circinalis was only observed in one site. Both morphological and ultrastructural methods brought upon some challenges and limitations while molecular methods using 16S rRNA gene and phylogenetic analysis which were optimized in this study offered better and more efficient ways of identification and were helpful in resolving genus-level and species-level relationships. The influence of physicochemical properties of pond water, especially nutrient levels (nitrate, nitrite, and orthophosphate) on the occurrence of these cyanobacteria was also analyzed. As a pioneering study on freshwater HABs in aquaculture ponds in the country, results of the study can provide information to improve the knowledge in bloom occurrence and prediction, and to develop freshwater HAB prevention and control methods. 相似文献