首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   105篇
  国内免费   567篇
安全科学   133篇
废物处理   112篇
环保管理   137篇
综合类   1047篇
基础理论   300篇
污染及防治   542篇
评价与监测   96篇
社会与环境   64篇
灾害及防治   63篇
  2024年   5篇
  2023年   47篇
  2022年   130篇
  2021年   101篇
  2020年   75篇
  2019年   79篇
  2018年   76篇
  2017年   85篇
  2016年   103篇
  2015年   103篇
  2014年   121篇
  2013年   178篇
  2012年   145篇
  2011年   152篇
  2010年   114篇
  2009年   105篇
  2008年   102篇
  2007年   111篇
  2006年   75篇
  2005年   56篇
  2004年   36篇
  2003年   56篇
  2002年   63篇
  2001年   43篇
  2000年   48篇
  1999年   45篇
  1998年   39篇
  1997年   37篇
  1996年   40篇
  1995年   25篇
  1994年   12篇
  1993年   25篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   3篇
  1988年   10篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1958年   1篇
  1956年   2篇
排序方式: 共有2494条查询结果,搜索用时 879 毫秒
351.
通过对城市区域的气候要素进行精细化数值模拟,可以研究城市化对城市热环境的重要影响.利用WRF/UCM模式,以杭州为例,通过采用不同的下垫面土地利用分类数据,分析量化历史城市化进程对月尺度城市热环境的影响,并进一步设计了敏感性模拟试验,研究杭州地区在理想化条件下城区面积增加约2倍时,城市热环境的变化情况.模拟结果表明,杭州地区在2010~2017年的城市化进程中,城区面积约增加了1倍,导致8月热岛强度等级高于”无”(Ht>0.5℃)的区域扩大了91%,且主城区的2m平均气温增加了0.4℃,但中心城区热岛强度等级没有明显提升.杭州城区面积在2017年基础上约增加2倍时,8月热岛强度等级高于”无”的区域扩大157%,1846.4km2的中心城区热岛强度等级由”弱”或”无”(Ht≤1.5℃)提升为”中等”(1.5相似文献   
352.
Marine aquaculture in semi-enclosed bays can significantly influence nutrient cycling in coastal ecosystems. However, the impact of marine aquaculture on the dynamics of dissimilatory nitrate reduction processes (DNRPs) and the fate of reactive nitrogen remain poorly understood. In this study, the rates of DNRPs and the abundances of related functional genes were investigated in aquaculture and non-aquaculture areas. The results showed that marine aquaculture significantly increased the denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) rates and decreased the rate of anaerobic ammonium oxidation (ANA), as compared with non-aquaculture sites. DNF was the dominant pathway contributing to the total nitrate reduction, and its contribution to the total nitrate reduction significantly increased from 66.72% at non-aquaculture sites to 78.50% at aquaculture sites. Marine aquaculture can significantly affect the physicochemical characteristics of sediment and the abundances of related functional genes, leading to variations in the nitrate reduction rates. Although nitrate removal rates increased in the marine aquaculture area, ammonification rates and the nitrogen retention index in the aquaculture areas were 2.19 and 1.24 times, respectively, higher than those at non-aquaculture sites. Net reactive nitrogen retention exceeded nitrogen removal in the aquaculture area, and the retained reactive nitrogen could diffuse with the tidal current to the entire bay, thereby aggravating N pollution in the entire study area. These results show that marine aquaculture is the dominant source of nitrogen pollution in semi-enclosed bays. This study can provide insights into nitrogen pollution control in semi-enclosed bays with well-developed marine aquaculture.  相似文献   
353.
Stringent quarantine measures during the Coronavirus Disease 2019 (COVID-19) lockdown period (January 23, 2020 to March 15, 2020) have resulted in a distinct decrease in anthropogenic source emissions in North China Plain compared to the paralleled period of 2019. Particularly, 22.7% decrease in NO2 and 3.0% increase of O3 was observed in Tianjin, nonlinear relationship between O3 generation and NO2 implied that synergetic control of NOx and VOCs is needed. Deteriorating meteorological condition during the COVID-19 lockdown obscured the actual PM2.5 reduction. Fireworks transport in 2020 Spring Festival (SF) triggered regional haze pollution. PM2.5 during the COVID-19 lockdown only reduced by 5.6% in Tianjin. Here we used the dispersion coefficient to normalize the measured PM2.5 (DN-PM2.5), aiming to eliminate the adverse meteorological impact and roughly estimate the actual PM2.5 reduction, which reduced by 17.7% during the COVID-19 lockdown. In terms of PM2.5 chemical composition, significant NO3? increase was observed during the COVID-19 lockdown. However, as a tracer of atmospheric oxidation capacity, odd oxygen (Ox = NO2 + O3) was observed to reduce during the COVID-19 lockdown, whereas relative humidity (RH), specific humidity and aerosol liquid water content (ALWC) were observed with noticeable enhancement. Nitrogen oxidation rate (NOR) was observed to increase at higher specific humidity and ALWC, especially in the haze episode occurred during 2020SF, high air humidity and obvious nitrate generation was observed. Anomalously enhanced air humidity may response for the nitrate increase during the COVID-19 lockdown period.  相似文献   
354.
355.
Ten nitrated polycyclic aromatic hydrocarbons (nPAHs) and 4 oxygenated polycyclic aromatic hydrocarbons (oPAHs) in fine particulate matter (PM2.5) samples from Mount Tai were analyzed during summer (June to August), 2015. During the observation campaign, the mean concentration of total nPAHs and oPAHs was 31.62 pg/m3 and 0.15 ng/m3, respectively. Two of the monitored compounds, namely 9-nitro-anthracene (9N-ANT) (6.86 pg/m3) and 9-fluorenone (9FO) (0.05 ng/m3) were the predominant compounds of nPAHs and oPAHs, respectively. The potential source and long-range transportation of nPAHs and oPAHs were investigated by the positive matrix factorization (PMF) method and the potential source contribution function (PSCF) methods. The results revealed that biomass/coal burning, gasoline vehicle emission, diesel vehicle emission and secondary formation were the dominant sources of nPAHs and oPAHs, which were mainly from Henan province and Beijing-Tianjin-Hebei region and Bohai sea. The incremental life cancer risk (ILCR) values were calculated to evaluate the exposure risk of nPAHs and oPAHs for three group people (infant, children and adult), and the values of ILCR were 7.02 × 10?10, 3.49 × 10?9 and 1.41 × 10?8 for infant, children and adults, respectively. All these values were lower than the standard of EPA (Environmental Protection Agency) (<10?6), indicating acceptable health risk of nPAHs and oPAHs.  相似文献   
356.
Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.  相似文献   
357.
内分泌干扰类农药会严重影响人类和其他动物的健康,而生物检测技术是内分泌干扰类农药的快速、简便的检测方法.本文介绍了内分泌干扰类农药常用的生物检测方法与技术,主要包括活体试验、离体试验与非细胞试验,并比较了各种方法的优缺点,列举了各方法在国内外环境激素测评中的应用现状,为我国内分泌干扰类农药生物检测技术的开发与应用提供了...  相似文献   
358.
Journal of Polymers and the Environment - Polypropylene carbonate (PPC)/polybutylene succinate (PBS) blends were prepared by melt-blending with terminal epoxy-based hyperbranched polymers (EHBP) as...  相似文献   
359.
360.
Environmental Chemistry Letters - The direct discharge of untreated contaminants into global water systems has jeopardized our water security worldwide. This environmental concern has prompted...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号