首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   10篇
  国内免费   7篇
安全科学   19篇
废物处理   58篇
环保管理   94篇
综合类   687篇
基础理论   180篇
环境理论   1篇
污染及防治   221篇
评价与监测   38篇
社会与环境   31篇
灾害及防治   3篇
  2018年   10篇
  2017年   16篇
  2016年   11篇
  2015年   16篇
  2014年   14篇
  2013年   51篇
  2012年   44篇
  2011年   46篇
  2010年   35篇
  2009年   38篇
  2008年   40篇
  2007年   35篇
  2006年   35篇
  2005年   41篇
  2004年   48篇
  2003年   41篇
  2002年   28篇
  2001年   15篇
  2000年   11篇
  1998年   13篇
  1995年   14篇
  1994年   12篇
  1978年   10篇
  1966年   10篇
  1965年   15篇
  1964年   15篇
  1963年   25篇
  1962年   17篇
  1961年   14篇
  1960年   23篇
  1959年   24篇
  1958年   15篇
  1957年   16篇
  1956年   15篇
  1955年   27篇
  1954年   33篇
  1953年   19篇
  1952年   14篇
  1951年   24篇
  1948年   9篇
  1947年   11篇
  1941年   9篇
  1940年   9篇
  1939年   9篇
  1938年   12篇
  1935年   9篇
  1933年   9篇
  1931年   11篇
  1930年   12篇
  1929年   13篇
排序方式: 共有1332条查询结果,搜索用时 0 毫秒
101.
102.
103.
104.
Besprechungen     
The Science of Nature -  相似文献   
105.
106.
107.
Background Recent studies indicated that arbuscular mycorrhizal fungi (AMF) play important roles in plant accumulation of uranium (U) from contaminated environments, but the impacts of fertilization practices on functioning of the symbiotic associations, which are crucial factors influencing plant nutrition and growth responses to mycorrhiza, have rarely been considered. Materials and Methods In a greenhouse experiment, a bald root barley mutant (brb) together with the wild type (wt) were used to test the role of root hairs and AMF in uranium (U) uptake by host plants from a U contaminated soil. Nil, 20 and 60 mg KH2PO4-P kg–1 soil were included to investigate the influences of phosphorus (P) fertilization on plant growth and accumulation of U. Results Dry matter yield of barley plants increased with increasing P additions and wt produced significantly higher dry weight than brb. Mycorrhiza markedly improved dry matter yield of both genotypes grown at nil P, whereas only brb responded positively to mycorrhiza at 20 mg P kg-1. At the highest P level, mycorrhiza resulted in growth depressions in both genotypes, except for the roots of wt. In general, plant P concentrations increased markedly with increasing P additions and in response to mycorrhiza. Mycorrhiza and P additions had no significant effects on shoot U concentrations. However, root U concentrations in both genotypes were significantly increased by mycorrhiza. On the other hand, shoot U contents increased with increasing P levels, while 20 mg P kg-1 stimulated, but 60 mg P kg-1 marginally affected the U accumulation in roots. Root length specific U uptake was moderately enhanced both by root hairs and strongly enhanced by mycorrhiza. Moreover, non-inoculated plants generally had higher shoot-root ratios of U content than the corresponding inoculated controls. Conclusion Our study shows that AMF and root hairs improves not only P acquisition but also the root uptake of U, and mycorrhiza generally decreases U translocation from plant root to shoot. Hence, mycorrhiza is of potential use in the phytostabilization of U contaminated environments. Perspectives The complex impacts of P on U accumulation by barley plants suggested that U behavior in mycorrhizosphere and translocation along the soil-fungi-plant continuum as affected by fertilization practices deserve extensive studies for optimizing the function of mycorrhizal associations for phytoremediation purposes.  相似文献   
108.
This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine–birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types—“birch forest-heath with mosses” and “meadow with low herbs”, while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.  相似文献   
109.
GOAL, SCOPE AND BACKGROUND: The objective of this paper is to determine and compare the concentrations of U and Th in soft to hard brown (lignite to sub-bituminous) coals of Serbia and Montenegro. It also presents comparison of the obtained data on U and Th concentrations with the published data on coals located in some other countries of the world. Almost the whole coal production of Serbia and Montenegro is used as feed coals for combustion in thermal power plants. METHODS: Channel samples from open pit and underground mines and core samples were collected for hard and soft brown coals. For the analysis the samples were decomposed using microwave technique. Obtained solutions containing U and Th were analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) using NIST standards. RESULTS: Concentration of U from the investigated basins and the corresponding mine fields ranges within 0.60-70.10 mg/kg, 0.65-3.20 mg/kg, 0.95-6.59 mg/kg, 1.20-6.05 mg/kg, 0.80-6.66 mg/kg, 0.18-89.90 mg/kg, 0.19-4.14 mg/kg, and 0.28-3.52 mg/kg for the Kostolac, Kolubara, Krepoljin, Sjenica, Soko Banja, Bogovina East field, Senje-Resavica and Pljevlja basins, respectively. Concentration of Th ranges within 0.20-2.60 mg/kg, 0.84-6.57 mg/kg, 1.48-6.48 mg/kg, 0.12-2.71 mg/kg, 0.13-4.95 mg/kg, 0.14-3.48 mg/kg, 0.29-3.56 mg/kg, and 0.17-1.89 mg/kg for the Kostolac, Kolubara, Krepoljin, Sjenica, Soko Banja, Bogovina East field, Senje-Resavica and Pljevlja basins, respectively. DISCUSSION: Brown coal from Senje-Resavica, Kolubara, Kostolac and Pljevlja is characterized by low U concentration. Coals form the Krepoljin, Soko Banja and Sjenica basins have slightly higher U concentrations than the mentioned group. The highest concentration of U is characteristic for the coal from the Bogovina East field. Concentration of Th in coals from Serbia and Montenegro has proved to be low. Out of all investigated coal basins, only the coal from the Krepoljin and Kolubara basins has high concentration of Th. The hydrothermally altered rocks of the Timok dacite-andesite complex, representing the basement of the Bogovina basin, could be a potential source of U, especially at the bottom part of the Lower seam of the Bogovina East field. CONCLUSIONS: This study shows that brown coals in Serbia and Montenegro (soft to hard brown coals or lignite to sub-bituminous) contain low levels of U (5.30 mg/kg, average value and 2.10 mg/kg geometric mean value) and Th (1.80 mg/kg, average value and 1.12 mg/kg geometric mean value). There are some obvious differences in concentration of U and Th in coals from different basins in Serbia and Montenegro. The approximate value for U and Th release mainly from power plants was 644.33 t and 983.46 t, respectively within the period 1965-2000 for the studied mines in Serbia, and 23.76 t and 15.05 t for the Potrlica mine (Montenegro) within the period 1965-1997. RECOMMENDATIONS: The coals in Serbia and Montenegro show no identifiable unfavourable impact on the surrounding environment, due to low natural radioactive concentration of U and Th, but further investigations concerning human health should be performed. PERSPECTIVES: Preliminary research revealed that in some Serbian coals (and, particularly, parts of the coal seam) U and Th content are rather high. Such coals should be carefully studied, as well as U and Th concentrations in ash, fly ash, waste disposals, nearby soil and ground water. Further studies should include determination of the radioactivity of all these products, and estimation of possible health impact.  相似文献   
110.
Use of crops for green manure as a substitute for chemical fertilizers and pesticides is an important approach towards more sustainable agricultural practices. Green manure from white clover is rich in nitrogen but white clover also produces the cyanogenic glucosides (CGs) linamarin and lotaustralin; CGs release toxic hydrogen cyanide (HCN) upon hydrolysis which may be utilized for pest control. We demonstrate that applying CGs in the form of a liquid extract of white clover to large columns of intact agricultural soils can result in leaching of toxic cyanide species to a depth of at least 1m. Although degradation of the CGs during leaching proceeded with half lives in the interval 1.5-35 h depending on soil characteristics, a fraction of the applied CGs (0.9-3.2%) was recovered in the leachate as either CGs or toxic cyanide species. Detoxification of the HCN formed was rapid in soil and leachate from both sandy and loamy soil. However, 30% of the leachate samples exceeded the EU threshold value of 50 micrgl(-1) total cyanide for drinking water and 85% exceeded the US threshold of 5 micrgl(-1) for cyanide chronic ecotoxicity in fresh water. This study demonstrates that even easily degradable natural products present in crop plants as defense compounds pose a threat to the quality of groundwater and surface waters. This aspect needs consideration in assessment of the risk associated with use of crops as green manure to replace chemical fertilizers and pesticides as well as in genetic engineering approaches to design crops with improved pest resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号