首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4304篇
  免费   209篇
  国内免费   177篇
安全科学   199篇
废物处理   302篇
环保管理   583篇
综合类   614篇
基础理论   1112篇
环境理论   3篇
污染及防治   1329篇
评价与监测   282篇
社会与环境   195篇
灾害及防治   71篇
  2023年   28篇
  2022年   104篇
  2021年   71篇
  2020年   46篇
  2019年   87篇
  2018年   187篇
  2017年   95篇
  2016年   149篇
  2015年   139篇
  2014年   161篇
  2013年   500篇
  2012年   134篇
  2011年   208篇
  2010年   193篇
  2009年   186篇
  2008年   197篇
  2007年   214篇
  2006年   170篇
  2005年   140篇
  2004年   167篇
  2003年   166篇
  2002年   146篇
  2001年   259篇
  2000年   167篇
  1999年   84篇
  1998年   43篇
  1997年   48篇
  1996年   33篇
  1995年   41篇
  1994年   49篇
  1993年   43篇
  1992年   31篇
  1991年   37篇
  1990年   29篇
  1989年   33篇
  1988年   23篇
  1987年   18篇
  1986年   18篇
  1985年   15篇
  1984年   19篇
  1983年   24篇
  1982年   23篇
  1981年   16篇
  1980年   13篇
  1979年   13篇
  1978年   13篇
  1977年   9篇
  1975年   12篇
  1973年   9篇
  1972年   11篇
排序方式: 共有4690条查询结果,搜索用时 62 毫秒
81.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   
82.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   
83.
This article presents the results of an experimental study conducted to evaluate the behavior of two types of andisol soils found in Tenerife, Canary Islands, Spain. The soils were evaluated in relation to their buffering capacity when confronted with acid and alkaline fronts generated during electroremediation treatment. The study was conducted using a cell, which established a continuous flow of distilled water through electrode chambers to remove H+ and OH? generated during electrolysis. The results indicate that the soils had sufficient buffer capacity to support variations in pH independent of the maintenance of flow of solution in the electrode chambers. Although the mechanism of migration was not affected, the flow of water favored the movement of ions by diffusion monitoring of the electrolytic current allowed for a real‐time parameter to act as an indicator of the quantity of ions available in regions near the electrodes. © 2004 Wiley Periodicals, Inc.  相似文献   
84.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   
85.
ABSTRACT: Intensive cropping systems based on mechanical movement of soil have induced land degradation in most agricultural areas due to soil erosion and soil fertility losses. Thus, farmers have been increasing fertilization rates to maintain an economically competitive crop yield. This practice has resulted in water quality degradation and lake eutrophication in many agricultural watersheds. Research was conducted in the Patzcuaro watershed in central Mexico to develop appropriate technology that prevents nonpoint source pollution from fertilizers. Organic matter (OM) and nitrogen (N) losses in runoff and nitrate (NO3‐N) percolation in Andisols with corn under conventional till (CT) and no‐till (NT) treatments using variable percentages of crop residue as soil cover were investigated for steep‐slope agriculture. USLE type runoff plots were used to collect water runoff, while suction tubes with porous caps at 30, 60, and 90 cm depth were used to sample soil water solutes for NO3‐N analyses. Results indicated a significant reduction of N and OM losses in runoff as residue cover increased in the NT treatments. Inorganic N in runoff was 25 kg/ha for NT without residue cover (NT‐0) and 6 kg/ha for the NT with 100 percent residue cover (NT‐100). Organic matter losses in runoff were 157 and 24 kg/ha for the NT‐0 and NT‐100 treatments, respectively. Nitrate‐N percolation was evident in CT and NT with 100 percent residue cover (NT‐100). However, NT‐100 had higher NO3‐N concentration at the root zone, suggesting the possibility of reducing fertilization rates with the use of NT treatments.  相似文献   
86.
87.
Cameron Highlands is a mountainous region with steep slopes. Gradients exceeding 20 are common. The climate is favourable to the cultivation of tea, sub-tropical vegetables and flowers (under rain-shelter). Crop production is sustained by high fertiliser and manure applications. However, agriculture in this environment is characterised by high levels of soil erosion and environmental pollution. A study on the sustainability of these agro-ecosystems was conducted. Results indicated that soil loss was in the range of 24–42 ton/ha/yr under vegetables and 1.3 ton under rain-shelter. Sediment load in the vegetable sub-catchment reached 3.5 g/L, 50 times higher than that associated with flowers under rain-shelter and tea. The sediments contained high nutrient loads of up to 470 kg N/ha/yr. The N, P and K lost in runoff from cabbage farms was 154 kg/season/ha, whereas in chrysanthemum farms it was 5 kg. In cabbage farms, the N, P, and K lost through leaching was 193 kg/season/ha. The NO3–N concentration in the runoff from the cabbage farms reached 25 ppm but less than 10 ppm in runoff from rain-shelters. Inorganic pollution in the rivers was within the acceptable limit of 10 ppm. The sustainability of the agro-ecosystems is in the order of tea { > } rain–shelter ≫ vegetables.  相似文献   
88.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   
89.
Many Superfund/hazardous chemical sites include waterbodies whose sediments contain hazardous chemicals. With the need to assess, rank, and remediate contaminated sediments at such sites, as well as in other waterways, regulators seek a simple, quantitative assessment approach that feeds easily into a decision‐making scheme. Numeric, co‐occurrence‐based “sediment quality guidelines” have emerged with the appearance of administrative simplicity. However, the very foundation of the co‐occurrence approach, based on the total concentrations of a chemical(s) in sediment, is technically invalid; its application relies on additional technically invalid presumptions. Use of technically invalid evaluation approaches renders any assessment of the significance of sediment contamination unreliable. This article reviews the technical roots and assumptions of the co‐occurrence‐based SQGs, the fundamental flaws in the rationale behind their development and application, and their misapplication for sediment quality evaluation. It also reviews concepts and approaches for the more reliable evaluation, ranking, and cleanup assessment of contaminated sediments at Superfund sites and elsewhere. © 2005 Wiley Periodicals, Inc.  相似文献   
90.
A disturbing trend among governmental agencies is the remediation of so‐called “nonhazardous” contaminated sediments/soils by deposition in minimum‐design Subtitle D municipal solid waste (MSW) landfills or landfills with equivalent design. This is done despite the fact that, in terms of protection of public health and environmental quality, the designation “nonhazardous” is misleading at best, and the fact that minimum‐design Subtitle D landfills as being allowed will not ensure protection of groundwater quality for as long as the buried wastes remain a threat. Although acknowledged in the regulatory documentation and exposed in the writings of a few in the scientific/engineering community, the environmental and public health issues that will inevitably be faced at minimum‐design Subtitle D landfills are underplayed, and even misrepresented, to the public. Discussion of relevant issues, as well as remarkable omissions, characterized the October 2004 United States Army Corps of Engineers (US ACE)/United States Environmental Protection Agency (US EPA)/Sediment Management Work Group (SMWG) conference,” Addressing Uncertainty and Managing Risk at Contaminated Sediment Sites.” This article addresses many of those neglected issues. © 2005 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号