首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
安全科学   4篇
废物处理   3篇
环保管理   4篇
综合类   12篇
基础理论   23篇
污染及防治   6篇
评价与监测   5篇
社会与环境   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
11.
The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined. The effect of aromatic compounds on the fungal biomass development varied considerably and depended on (a) the compound, (b) the external concentration, and (c) the fungal species. The highest effect on the fungal biomass development was observed for 3-CBA. Generally the tolerance of WR fungi against aromatic compounds was higher than that of the biotrophic fungal species. The capability of different fungi to degrade aromatic substances varied between the species but not generally between biotrophic and saprotrophic fungi. The highest degradation capability for aromatic compounds was detected for T. versicolor and H. annosum, whereas for Phanerochaete chrysosporium and the ECM fungi lower degradation rates were found. However, Paxillus involutus and S. bovinus showed comparable degradation rates at low concentrations of benzoic acid and 4-hydroxybenzoic acid. In contrast to liquid cultures, where no biodegradation of 3-CBA by S. bovinus was observed, mycorrhizal pines inoculated with S. bovinus showed a low capability to remove 3-CBA from soil substrates. Additional X-ray microanalytical investigations showed, that 3-CBA supplied to mycorrhizal plants was accumulated in the root cell cytoplasm and is translocated across the endodermis to the shoot of mycorrhizal pine seedlings.  相似文献   
12.

Goal and Scope

The transfer of various chemical elements from maternal food into human milk was investigated. Transfer factors (hereafter TF) food/mother’s milk were taken to represent those nuclides pertinent to radiation protection in order to estimate possible radioactive burdens of breast-fed babies.

Methods

A total of 23 mothers, mainly from the Euroregion Neisse (PL, CZ, D; all being in their mature phases of lactation), took part in this study (1998–2001), for time periods between two to eight weeks (8805 samples were analyzed). The diurnal uptake of elements was determined by the duplicate method.

Results and Conclusions

TF values determined for Ag, Au, Ba, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, I, La, Mn, Mo, Nb, Ni, P, Pb, Ra, Rb, Re, Ru, Sb, Sr, Te, Th, Ti, Uo, Y, Zn, Zr were theoretically analyzed with the following result: metal ions transfer into mother’s milk mainly in coordinated states (i.e. bound to anionic ligands), with TF values which increase according to complex stabilities. Therefore it can be assessed that neither Cd nor Ba, both forming only weak complexes, pose hazards to breastfed children.

Outlook

There are relationships between transfer factors pertaining to certain elements and the amounts of others consumed by the mother; i.e. (changes in) consumption of one element influence the transfer towards women’s milk of another element. Accordingly, strategies can be developed to keep off hazardous substances — including fissiogenic radionuclides — from milk which is far more efficient than traditional isotopic dilution; however, iodide tablets are useful here, too.  相似文献   
13.
14.
15.
16.
Legume root nodules are the site of biological nitrogen fixation in theRhizobium-legame symbiosis. Nodules are structures unique to this symbiosis and they are morphologically as well as physiologically distinct from other plant organs. Organic substances affecting the macro- or microsymbionts vitality, such as PAHs (Wetzel et al., 1991), reduce nodulation even before visible damage to the plant can be detected. We present data that the formation of nodules (nodulation) may also serve for ecotoxicological evaluation of heavy metals in different binding states. Tests were performed in petri dishes with alfalfa (lucerne) seedlings inoculated withRhizobium meliloti. Cultivation took place in growth cabinets with carefully standardized and documented growth conditions. Data from stressed plants was recorded after 14 days of cultivation on contaminated substrate. A dose responsive decrease in nodulation was found after application of cadmium acetate, cadmium iodide, cadmium chloride, sodium salts of arsenate and arsenite, arsenic pentoxide, and lead nitrate, whereas lead acetate showed no effect up to a concentration of 3 μM. The dose response curves were used to calculate EC10, EC50 and EC90 values. EC50 values for cadmium compounds range from 1.5 to9.5 pM. Testing different arsenic compounds results in EC50 from 2.6 to 20.1 μM. EC50 of lead nitrate is 2.2 μM. The sensitivity, reproducibility and reliability of this test system is discussed compared to established biotests.  相似文献   
17.
18.

Goal, Scope and Background

The study was conducted to test the hypothesis that the regional variability of nitrogen (N) and metal accumulations in terrestrial ecosystems are due to historical and recent ways of land use. To this end, in two regions of Central Europe the metal and N accumulations in both regions should be examined by comparative moss analysis. The regions should be of quantitatively specified representativity for selected ecological characteristics of Europe. Within both regions these characteristics should be covered by the sites where the moss samples were collected. The number of samples should allow for geostatistical estimation of the measured nitrogen and metal loads.

Methods

The two regions of investigation were selected according to an ecological land classification of Europe which was computed by classification trees. Within each of both research areas the sampling points were localized according to the areas occupied by the ecologically defined land classes. The sampling and chemical analysis of mosses was conducted in accordance with an appropriate UNECE guideline by means of ICP-MS (metals) and combustion analysis (N). The quality of measurements was assured using certified reference materials. The differences of deposition loads were tested for statistical significance with regard to time and space. Variogram analysis was used to examine and model the spatial autocorrelation function of the measurements. Ordinary kriging was then applied for surface estimations.

Results

By use of the ecological regionalisation of Europe the Weser-Ems Region (WER) and the Euro Region Nissa (ERN) were selected for investigation. The sampling sites represent quite well the natural landscapes and the land use categories of both regions. The measurement values corroborate the decline of metal accumulation observed since the beginning of the European Mosses Monitoring Survey in 1990. The metal loads of the mosses in the ERN exceed those in the WER significantly. The opposite holds true for the N concentrations: those in the WER are significantly higher than those in the ERN.

Discussion

The decrease of heavy metal emissions is correlated with lowered deposition and accumulation rates in terrestrial ecosystems. The accumulation of nitrogen in the biosphere is not following this trend.

Conclusions

The technique of moss analysis is adequate for spatially valid biomonitoring of spatial and temporal trends of metals and nitrogen in terrestrial ecosystems. By this, it enables to prove the efficiency of environmental policies.

Recommendations and Perspectives

The accumulation of N in ecosystems is still a serious environmental problem. Related ecological impacts are the eutrophication of aquatic ecosystems like ground waters, lakes, rivers and oceans as well as the biocoenotic changes in terrestrial ecosystems. Thus, a statistically valid exposure analysis must encompass both, accumulation of metals and N bioaccumulation. Further, the bioaccumulation of persistent organic pollutants should be monitored. Finally, environmental biomonitoring should be conducted in much closer contact with human health aspects.  相似文献   
19.
We introduce the notion that the energy of individuals can manifest as a higher‐level, collective construct. To this end, we conducted four independent studies to investigate the viability and importance of the collective energy construct as assessed by a new survey instrument—the productive energy measure (PEM). Study 1 (n = 2208) included exploratory and confirmatory factor analyses to explore the underlying factor structure of PEM. Study 2 (n = 660) cross‐validated the same factor structure in an independent sample. In study 3, we administered the PEM to more than 5000 employees from 145 departments located in five countries. Results from measurement invariance, statistical aggregation, convergent, and discriminant‐validity assessments offered additional support for the construct validity of PEM. In terms of predictive and incremental validity, the PEM was positively associated with three collective attitudes—units' commitment to goals, the organization, and overall satisfaction. In study 4, we explored the relationship between the productive energy of firms and their overall performance. Using data from 92 firms (n = 5939employees), we found a positive relationship between the PEM (aggregated to the firm level) and the performance of those firms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
20.
Solid-state 15N NMR was applied to the aqueous extracts of a 13C-enriched plant slurry (Lolium perenne), anaerobically incubated with 15N3-trinitrotoluene (TNT). Almost all 15N3-TNT transformation products became covalently bound to the plant-derived organic material extractable with water. DCPMAS 15N 13C NMR revealed a three-step reaction scheme. After reduction of TNT, the aryl amines are acetylated. Subsequent alkylation of the resulting amides strengthens the incorporation of TNT-transformation products into humic material. Comparable results have been recently obtained under aerobic conditions, which indicates that this pathway is a common process during biological TNT transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号