首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   16篇
  国内免费   4篇
安全科学   16篇
废物处理   5篇
环保管理   93篇
综合类   65篇
基础理论   115篇
污染及防治   89篇
评价与监测   14篇
社会与环境   19篇
灾害及防治   12篇
  2023年   6篇
  2022年   8篇
  2021年   9篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2017年   23篇
  2016年   20篇
  2015年   17篇
  2014年   21篇
  2013年   47篇
  2012年   15篇
  2011年   27篇
  2010年   15篇
  2009年   14篇
  2008年   15篇
  2007年   7篇
  2006年   14篇
  2005年   7篇
  2004年   16篇
  2003年   13篇
  2002年   9篇
  2001年   7篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1972年   3篇
  1970年   2篇
  1964年   1篇
  1958年   1篇
排序方式: 共有428条查询结果,搜索用时 337 毫秒
261.
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age‐structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories.  相似文献   
262.
Environment, Development and Sustainability - The presence of contaminants of emerging concern (CECs) in wastewater treatment plant effluents is a significant underlying health risk and...  相似文献   
263.
Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science‐based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science‐based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success—population recovery—may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress.  相似文献   
264.
265.
Resilience thinking has developed separately in the bodies of literature on social-ecological systems, and that published principally within developmental psychology and mental health on the resilience of individuals. This paper explores what these bodies of literature might learn from the other towards a more integrated and enriched understanding of both social-ecological systems and social resilience. The psychology-based literature recognises a strong set of factors that enhance the strengths of individuals and communities, but lacks a sophisticated integration of the physical environmental context. The social-ecological systems literature offers an excellent foundation in complex adaptive systems, but tends to superimpose ecological concepts of system function onto the human domain, and needs to include an array of core social science concepts that are important to a full understanding of social-ecological systems. An example on north eastern Australia suggests how a converged understanding of social resilience could assist managers to acknowledge, enhance and foster social resilience in linked social-ecological systems.  相似文献   
266.
Although the public desire for healthy environments is clear‐cut, the science and management of ecosystem health has not been as simple. Ecological systems can be dynamic and can shift abruptly from one ecosystem state to another. Such unpredictable shifts result when ecological thresholds are crossed; that is, small cumulative increases in an environmental stressor drive a much greater change than could be predicted from linear effects, suggesting an unforeseen tipping point is crossed. In coastal waters, broad‐scale seagrass loss often occurs as a sudden event associated with human‐driven nutrient enrichment (eutrophication). We tested whether the response of seagrass ecosystems to coastal nutrient enrichment is subject to a threshold effect. We exposed seagrass plots to different levels of nutrient enrichment (dissolved inorganic nitrogen) for 10 months and measured net production. Seagrass response exhibited a threshold pattern when nutrient enrichment exceeded moderate levels: there was an abrupt and large shift from positive to negative net leaf production (from approximately 0.04 leaf production to 0.02 leaf loss per day). Epiphyte load also increased as nutrient enrichment increased, which may have driven the shift in leaf production. Inadvertently crossing such thresholds, as can occur through ineffective management of land‐derived inputs such as wastewater and stormwater runoff along urbanized coasts, may account for the widely observed sudden loss of seagrass meadows. Identification of tipping points may improve not only adaptive‐management monitoring that seeks to avoid threshold effects, but also restoration approaches in systems that have crossed them.  相似文献   
267.
The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social‐learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production.  相似文献   
268.
This article will briefly discuss the implications of recognition of ecological justice in relation to environmental education(EE) and education for sustainable development(ESD).It is argued that the present conception of environment taught through EE and ESD negates the subjectivity of non-human species and ignores the ethical imperatives of ecological justice.Evocating environmental ethics,major directions integrating ecological justice into EE and ESD are proposed.  相似文献   
269.
270.
The role of behavioral ecology in improving wildlife conservation and management has been the subject of much recent debate. We sought to answer 2 foundational questions about the current use of behavioral knowledge in conservation: To what extent is behavioral knowledge used in wildlife conservation and management, and how does the use of animal behavior differ among conservation fields in both frequency and types of use? We searched the literature for intersections between key fields of animal behavior and conservation and created a systematic heat map (i.e., graphical representation of data where values are represented as colors) to visualize relative efforts. Some behaviors, such as dispersal and foraging, were commonly considered (mean [SE] of 1147.38 [353.11] and 439.44 [108.85] papers per cell, respectively). In contrast, other behaviors, such as learning, social, and antipredatory behaviors were rarely considered (mean [SE] of 33.88 [7.62], 44.81 [10.65], and 22.69 [6.37] papers per cell, respectively). In many cases, awareness of the importance of behavior did not translate into applicable management tools. Our results challenge previous suggestions that there is little association between the fields of behavioral ecology and conservation and reveals tremendous variation in the use of different behaviors in conservation. We recommend that researchers focus on examining underutilized intersections of behavior and conservation themes for which preliminary work shows a potential for improving conservation and management, translating behavioral theory into applicable and testable predictions, and creating systematic reviews to summarize the behavioral evidence within the behavior‐conservation intersections for which many studies exist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号