Air pollutant emission is one of the predominant factors affecting urban air quality such as ground-level ozone formation. This paper assesses the impact of changing emission inventory scenarios, based on combinations of point, mobile, area/non-road and biogenic sources, on the tropospheric ozone concentration in two southeast Texas urban areas, i.e. Houston-Galveston and Beaumont-Port Arthur, during the rapid ozone formation event (ROFE) on August 25, 2000. The EPA's Community Multiscale Air Quality (CMAQ) modeling system with 1999 national emission inventory (NEI99) estimates and updated SAPRC99 chemical mechanism are used in the sensitivity analysis for twelve different emission scenarios. Based on model results, it is found that the point source emission of NOx and VOC contributes the greatest ozone peak in the ROFE. Removing Texas point sources of VOC and NOx emission from the inventory results in a reduction in peak O3 concentration by 128 and 70 ppbv in Houston urban area, respectively. Similar but less drastic impact from point source is also observed in the Beaumont-Port Arthur area. The effect on peak ozone concentration due to mobile, area and non-road sources emissions are less significant compared to that of point source emission. Reducing VOC emission appears to be more effective than reducing NOx emission in lowering peak O3 concentration in the studied region. Although biogenic emission can contribute up to 37 ppbv of peak ozone level over a large area, the affected area is away from the urban region of concern, and should not be the main cause for O3 non-attainment in the two urban areas. Removing CO emission from mobile sources does not lead to significant reduction (< 1 ppbv) in ozone concentrations. The modeled data also show that the transport of O3 precursors from adjacent states can cause a significant ozone plume near Beaumont due to its proximity to the state border based on the conditions during the August 25, 2000 O3 episode. 相似文献
The weekly periodicities in meteorological variables and its association with aerosols in Korea are investigated using long-term surface measurements of meteorology (1975–2005) and aerosols (1999–2005). Through an analysis of the annual (and/or seasonal) values averaged over 10 stations, we identified distinct weekly periodicities in the daily minimum temperature (Tmin), diurnal temperature range (DTR), cloud fraction, and solar insolation, although they have different characteristics from each other. The weekly association among variables is discussed in this study. Positive anomalies of the cloud fraction and Tmin and negative anomalies of solar insolation and DTR are seen for the second half of the week and the reverse for the first half of the week, i.e., more cloudiness and less insolation for Wednesday?Thursday and less cloudiness and more insolation for Monday?Tuesday. Furthermore, seasonal dependence of weekly anomalies shows that the weekly periodicities are enhanced especially in autumn, more than 2–3 times as great as those of the annual mean. The weekly cycles in such variables are most likely driven by changes in cloud fraction, possibly through aerosol–cloud interactions induced by aerosol variations between working weekdays and Sunday, which are clearly identified in PM10 weekly cycles. This study also suggests that the weekly periodicities in meteorological variables are possibly associated with long-range transport of weekly periodicities, as well as aerosol–cloud-precipitation interactions over the region. 相似文献
Speciated samples of PM2.5 were collected at the Big Bend site from July of 2003 to June 2006 and the McDonald Observatory site from July of 2003 to August of 2005 in southwestern Texas, respectively, by the US Environmental Protection Agency. A total of 175 samples for the Big Bend site and 105 samples for the McDonald Observatory site with 52 species were measured; however, 30 and 32 species from the Big Bend and McDonald Observatory sites, respectively, were excluded because of too much below-detection-limit data. Due to the laboratory change about November 1 of 2004 and possible analytical artifacts, phosphorous was excluded as well. Among the species excluded, 31 species are common to both sites. The two data sets were analyzed by positive matrix factorization to infer the sources of PM observed at the two sites. The analysis resolved five source-related factors for Big Bend and four for McDonald Observatory. Sulfate-rich secondary aerosol, coal burning, motor vehicle/road dust, and a mixed factor were identified as common sources to both sites. The other factor identified for Big Bend is related to soil. Sulfate mainly exists as ammonium salts. The sulfate-rich secondary aerosols account for about 62% and 66% of the PM2.5 mass concentration at the two sites, respectively. The highest concentration of Si associated with Ca, Fe, textSO42 - {text{SO}}_4^{2 - } , and organic carbon at the two sites was possibly attributed to the coal-fired power plants in the region. Basically, the factor of sulfate and coal burning at the two sites showed similar chemical composition profiles and seasonal variation that reflect the regional characteristics of these sources. The regional factors of sulfate, coal burning, and soil showed predominantly low-frequency variations; however, the area-related and/or local factors showed both high and low frequency variations. The motor vehicle/road dust and the mixed factors were likely to be area-related and/or local source. 相似文献
Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (?O2?). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs’ lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum’s harvesting.