首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   1篇
  国内免费   10篇
安全科学   11篇
废物处理   45篇
环保管理   11篇
综合类   40篇
基础理论   32篇
污染及防治   93篇
评价与监测   9篇
社会与环境   16篇
灾害及防治   1篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   3篇
  2013年   19篇
  2012年   10篇
  2011年   15篇
  2010年   17篇
  2009年   18篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   9篇
  2004年   19篇
  2003年   7篇
  2002年   14篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1992年   3篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1979年   2篇
  1977年   2篇
  1969年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有258条查询结果,搜索用时 31 毫秒
211.
To understand the characteristics of non-methane hydrocarbon (NMHC) abundance in an urban air of Nagoya, one of the metropolitan areas of Japan, 48 species of C2–C11 NMHCs were measured with a measurement system, developed in this study, by using gas chromatography with flame ionization detection (GC/FID) continuously for one year from December 2003 to November 2004.Annual mean concentration of NMHCs in normal and propylene equivalent (PE) in Nagoya was compared with those in four urban areas of Seoul, London, Lille, and Dallas to extract characteristics of urban air. While the absolute values of the normal and PE concentrations of alkanes, alkenes, alkyne, and aromatics were significantly different among these urban areas, the proportions of each chemical group to the total NMHC were not so different.In Nagoya, the total normal concentration was high from November to February and low from June to August. The pattern of the seasonal variation was influenced mainly by that of alkanes. On the other hand, the total PE concentration was high from July to December and low from January to June. The pattern of the seasonal variation was influenced mainly by those of alkenes and aromatics. Particularly the normal concentration of isoprene was high from May to September because of large emission associated with activity of plants. As the results, in summer, the PE concentration of isoprene was especially high, and its contribution to the total NMHCs measured in this study was approximately 40%. The total PE concentrations were high in summer when the concentration of OH radicals is also high, suggesting that the productions of ozone and secondary organic aerosol (SOA) are likely to be promoted in summer of Nagoya.  相似文献   
212.
Maki T  Hirota W  Motojima H  Hasegawa H  Rahman MA 《Chemosphere》2011,83(11):1486-1492
Aquatic arsenic cycles mainly depend on microbial activities that change the arsenic chemical forms and influence human health and organism activities. The microbial aggregates degrading organic matter are significantly related to the turnover between inorganic arsenic and organoarsenic compounds. We investigated the effects of microbial aggregates on organoarsenic mineralization in Lake Kahokugata using lake water samples spiked with dimethylarsinic acid (DMA). The lake water samples converted 1 μmol L−1 of DMA to inorganic arsenic for 28 d only under anaerobic and dark conditions in the presence of microbial activities. During the DMA mineralization process, organic aggregates >5.0 μm with bacterial colonization increased the densities. When the organic aggregates >5.0 μm were eliminated from the lake water samples using filters, the degradation activities were reduced. DMA in the lake water would be mineralized by the microbial aggregates under anaerobic and dark conditions. Moreover, DMA amendment enhanced the degradation activities in the lake water samples, which mineralized 50 μmol L−1 of DMA. The DMA-amended aggregates >5.0 μm completely degraded 1 μmol L−1 of DMA with a shorter incubation time of 7 d. The supplement of KNO3 and NaHCO3 to lake water samples also shortened the DMA-degradation period. Presumably, the bacterial aggregates involved in the chemical heterotrophic process would contribute to the DMA-biodegradation process in Lake Kahokugata, which is induced by the DMA amendment.  相似文献   
213.
The contribution of non-point sources to perfluorinated surfactants (PFSs) in a river was evaluated by estimating their fluxes and by using boron (B) as a tracer. The utility of PFSs/B as an indicator for evaluating the impact of non-point sources was demonstrated. River water samples were collected from the Iruma River, upstream of the intake of drinking water treatment plants in Tokyo, during dry weather and wet weather, and 13 PFSs, dissolved organic carbon (DOC), total nitrogen (TN), and B were analyzed. Perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), and perfluorododecanoate (PFDoDA) were detected on all sampling dates. The concentrations and fluxes of perfluorocarboxylates (PFCAs, e.g. PFOA and PFNA) were higher during wet weather, but those of perfluoroalkyl sulfonates (PFASs, e.g. PFHxS and PFOS) were not. The wet/dry ratios of PFSs/B (ratios of PFSs/B during wet weather to those during dry weather) agreed well with those of PFS fluxes (ratios of PFS fluxes during wet weather to those during dry weather), indicating that PFSs/B is useful for evaluating the contribution from non-point sources to PFSs in rivers. The wet/dry ratios of PFOA and PFNA were higher than those of other PFSs, DOC, and TN, showing that non-point sources contributed greatly to PFOA and PFNA in the water. This is the first study to use B as a wastewater tracer to estimate the contribution of non-point sources to PFSs in a river.  相似文献   
214.
Livestock wastewater is treated by activated sludge treatment. Untreated livestock wastewater has high estrogen activity because animal excreta contains estrogen. When activated sludge treatment is applied, the estrogen activity declines or is lost. However, the color of treated livestock wastewater is deep brownish-red because of the decomposition of organic compounds or the synthesis of metabolites. Discharging colored wastewater to the environment could cause some problems, so it is necessary to decolorize colored wastewater before it is discharged. It has been suggested that electrolysis decolorization technology is suitable for treating colored wastewater; however, the process produces volatile organic compounds (VOCs). In fact, little research has been conducted with reference to estrogen activity in wastewater that has undergone electrolysis, especially on the contribution of the electrolysis decolorization process to estrogen activity, i.e., the possibility of resynthesis of some substance with estrogen activity due to resolved and metabolized colored components. In this study, the concentration of VOC was measured for various electrolysis conditions, and estrogen activity was examined using a yeast two-hybrid assay. From the results, decolorization of colored livestock wastewater by electrolysis was possible, and the VOC generation during electrolysis could be controlled depending on the electrolysis conditions. Estrogen activity in colored livestock wastewater disappeared on electrolysis decolorization.  相似文献   
215.
Migration of 14C derived from 14C-acetic acid was examined by using soils sampled from paddies in four administrative areas in Japan (Aomori, Yamanashi, Ehime and Okinawa) and rice plant in a tracer experiment to understand the fate of 14C in the paddy soil-to-rice plant system. The loss of 14C radioactivity levels derived from 14C-acetic acid was caused by soil microorganism breakdown. A part of the 14C fixation to soil was caused by microbial assimilation into the fatty acid fraction. 14C moved upward via two different types of 14C dynamics in soil: quick movement upward; and constant but slow movement upward. 14C was highly assimilated into the plant panicle and that was caused by the root-uptake and the transfer of 14C. Migration of 14C derived from 14C-acetic acid relied heavily upon changes of chemical forms and characteristics of 14C-compound as caused by microorganisms in soil.  相似文献   
216.
The membrane flash process utilizing waste thermal energy was developed to achieve an energy-saving technology and to substitute it for a conventional regenerator. The operating conditions of the membrane flash at high temperature were studied. The petroleum refining process and iron manufacturing process were proposed for candidate processes that actually had waste energy sources. The DEA concentration and the flashing pressure had optimum values to improve the performance and reduce the energy consumption for CO2 recovery. Energy consumptions and costs for CO2 recovery in the membrane flash and chemical absorption were estimated by a process simulator and discussed under the same conditions. The membrane flash can achieve lower energy capture than the chemical absorption for the above industrial processes. The membrane flash is suitable for the CO2 emission sources that had high CO2 concentration independently of the plant scale. The chemical absorption can be applied if the plant scale is large and also the CO2 concentration is low.  相似文献   
217.
The management of waste materials arising from home health and medical care services (HHMC wastes) in Japan is now receiving greater attention from governmental workers dealing with general household waste materials. In general, HHMC waste materials are collected in a mixed form, transported and disposed of along with municipal solid wastes. As a result, municipal workers are suffering needle stick accidents so that infections associated with HHMC waste materials may occur. The collection and transportation by patients and their families of HHMC waste materials with sharp-edges, such as injection needles, to medical-related facilities can prevent municipal workers from experiencing needle-prick accidents. One of the most important strategies for medical-related facilities is hence the education of patients and their families. Improved rules for handling HHMC waste materials are essential for the safe and effective management.  相似文献   
218.
Airborne particulate matter, suspected to induce adverse effects on human health, have been one of the most important concerns regarding recent air pollution issues in Japan. To characterize regional and seasonal variations in emission sources of fine airborne particulate matter (d < 2 microm), monthly samples (n = 36 for each site) were collected at urban (Tokyo), suburban (Maebashi), and mountainous (Akagi) sites in Japan from April 2003 to March 2006. Multielement analysis of chemical species (Na, Al, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sb, and Pb) was performed by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry. The combined source receptor model, which consists of positive matrix factorization and chemical mass balance, determined the contributions of nine emission sources (local and continental soils, road dust, coal and oil combustion, waste incineration, steel industry, brake wear, and diesel exhaust) to the observed elemental concentrations. Large regional differences were identified in the source contributions among the observational sites. Diesel exhaust was identified as the most significant source (70% of identified contributions) at the urban site. Local and continental soils, coal combustion, and diesel exhaust were intricately assigned (20-30% each) to the suburban site. Continental soil was the predominant source (65%) at the mountainous site. Respective significant source contributions dominated the seasonal variations of total elemental concentrations at each site. These results suggest that a better understanding of the regional and seasonal characteristics of impacting emission sources will be important for improving regional environments.  相似文献   
219.
Begum ZA  Rahman IM  Tate Y  Sawai H  Maki T  Hasegawa H 《Chemosphere》2012,87(10):1161-1170
Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, an increasing interest is focused on the development and use of the eco-friendly APCs having better biodegradability and less environmental toxicity. The paper deals with the results from the lab-scale washing treatments of a real sample of metal-contaminated soil for the removal of the ecotoxic metal ions (Cd, Cu, Ni, Pb, and Zn) using five biodegradable APCs, namely [S,S]-ethylenediaminedisuccinic acid, imminodisuccinic acid, methylglycinediacetic acid, DL-2-(2-carboxymethyl) nitrilotriacetic acid (GLDA), and 3-hydroxy-2,2′-iminodisuccinic acid. The performance of those biodegradable APCs was evaluated for their interaction with the soil mineral constituents in terms of the solution pH and metal-chelant stability constants, and compared with that of EDTA. Speciation calculations were performed to identify the optimal conditions for the washing process in terms of the metal-chelant interactions as well as to understand the selectivity in the separation ability of the biodegradable chelants towards the metal ions. A linear relationship between the metal extraction capacity of the individual chelants towards each of the metal ions from the soil matrix and metal-chelant conditional stability constants for a solution pH greater than 6 was observed. Additional considerations were derived from the behavior of the major potentially interfering cations (Al, Ca, Fe, Mg, and Mn), and it was hypothesized that use of an excess of chelant may minimize the possible competition effects during the single-step washing treatments. Sequential extraction procedure was used to determine the metal distribution in the soil before and after the extractive decontamination using biodegradable APCs, and the capability of the APCs in removing the metal ions even from the theoretically immobilized fraction of the contaminated soil was observed. GLDA appeared to possess the greatest potential to decontaminate the soil through ex situ washing treatment compared to the other biodegradable chelants used in the study.  相似文献   
220.
A sensitive and reliable method for the simultaneous determination of hydroxycoumarin-type (brodifacoum, bromadiolone, coumatetralyl, and warfarin) and indandione-type (chlorophacinone, diphacinone, and pindone) rodenticides in agricultural products by gel permeation chromatography (GPC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed. The procedure involved extraction of the rodenticides from samples with acetone, followed by liquid–liquid partitioning with hexane/ethyl acetate (1:1, v/v) and 10% sodium chloride aqueous solution, then cleanup using GPC, and finally, analysis using LC–MS/MS. High recoveries from the GPC column were obtained for all rodenticides tested using a mobile phase of acetone/cyclohexane/triethylamine (400:1600:1, v/v/v). An ODS column, which contains low levels of metal impurities, gave satisfactory peak shapes for both hydroxycoumarin- and indandione-type rodenticides in the LC–MS/MS separation. The average recoveries of rodenticides from eight agricultural foods (apple, eggplant, cabbage, orange, potato, tomato, brown rice, and soybean) fortified at 0.0005–0.001 mg/kg ranged from 76 to 116%, except for bromadiolone in orange (53%) and diphacinone in soybean (54%), and the relative standard deviations ranged from 1 to 16%. The proposed method effectively removed interfering components, such as pigments and lipids, and showed high selectivity. In addition, the matrix effects were negligible for most of the rodenticide/food combinations. The results suggest that the proposed method is reliable and suitable for determining hydroxycoumarin- and indandione-type rodenticides in agricultural products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号