全文获取类型
收费全文 | 1673篇 |
免费 | 84篇 |
国内免费 | 593篇 |
专业分类
安全科学 | 159篇 |
废物处理 | 97篇 |
环保管理 | 119篇 |
综合类 | 844篇 |
基础理论 | 322篇 |
污染及防治 | 640篇 |
评价与监测 | 57篇 |
社会与环境 | 43篇 |
灾害及防治 | 69篇 |
出版年
2024年 | 2篇 |
2023年 | 26篇 |
2022年 | 102篇 |
2021年 | 74篇 |
2020年 | 55篇 |
2019年 | 49篇 |
2018年 | 76篇 |
2017年 | 64篇 |
2016年 | 97篇 |
2015年 | 106篇 |
2014年 | 137篇 |
2013年 | 158篇 |
2012年 | 135篇 |
2011年 | 131篇 |
2010年 | 133篇 |
2009年 | 119篇 |
2008年 | 112篇 |
2007年 | 77篇 |
2006年 | 79篇 |
2005年 | 53篇 |
2004年 | 59篇 |
2003年 | 70篇 |
2002年 | 49篇 |
2001年 | 39篇 |
2000年 | 48篇 |
1999年 | 36篇 |
1998年 | 65篇 |
1997年 | 44篇 |
1996年 | 26篇 |
1995年 | 27篇 |
1994年 | 26篇 |
1993年 | 27篇 |
1992年 | 19篇 |
1991年 | 13篇 |
1990年 | 6篇 |
1989年 | 5篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1984年 | 2篇 |
排序方式: 共有2350条查询结果,搜索用时 15 毫秒
21.
为了提高剩余污泥为燃料的微生物燃料电池(SMFC)产电性能以及污泥减量化效果,在不同的温度(40、45和50℃)研究单室无膜微生物燃料电池中酶对SMFC产电特性的强化效果.加入单一酶(蛋白酶或α-淀粉酶)的结果表明,随着温度的上升,SMFC功率密度均上升,但40℃时强化效果最明显,与加入失活酶的对照组相比分别增加198%和130%.在40℃下,混合酶比(蛋白酶浓度:淀粉酶浓度)为2∶3时,SMFC最大功率密度为776 mW/m2.随着混合酶中淀粉酶的比例提高,SMFC库伦效率逐渐增加,当混合酶比为4∶1时,CE(库伦效率)可达18.3%,同时TCOD、TSS和VSS去除率分别为70.3%、66.7%和80.4%.因此,温度相对较低时,外加酶强化效果更明显;与单种酶相比,混合酶对SMFC产电性能和污泥减量化的强化效果更显著. 相似文献
22.
以鲤鱼为实验生物,应用流动式摄取及释放装置,进行了2,6-二硝基甲苯(2,6-DNT)的生物浓缩与释放研究。取得了2,6-DNT在鲤鱼(全鱼)、肝及肠部的生物浓缩曲线。全鱼的浓缩曲线可以稳态(平台式)曲线描述,但是肝、肠部浓缩曲线均呈峰形。肝部峰快速下降后渐趋稳态,肠部峰下降未得稳态。峰形,肝在先,肠在后。对比2,6-DNT在全鱼及肝、肠的生物浓缩曲线,并参照报道(1,2)指出,全鱼摄取曲线上各点所表现的浓度值为各时刻鱼体内各组织摄取化学品总重对全鱼重量的比值。肝、肠部峰形曲线预示了在肝、肠内生物浓缩过程发生了生物转化作用。对全鱼的生物浓缩过程应用单区一级动力学模型,求得BCF值与消除速率常数K1与K2,由K1/K2计算得到的BCF值与实测值相符。释放较慢,释放曲线呈双曲线形,半减期为4.8h。 相似文献
23.
Qu Yang Luo Hongjie Gao Guolei Wang Yaowu Wu Linli Gao Yang Xing Yulong 《Journal of Material Cycles and Waste Management》2023,25(2):1130-1141
Journal of Material Cycles and Waste Management - Secondary aluminum dross (SAD) is classified as hazardous waste by many countries in the world because it contains a large number of toxic and... 相似文献
24.
Xiao Pengying Ai Shuo Zhou Jing Luo Xiaojing Kang Baowen Feng Li Zhao Tiantao 《Environmental science and pollution research international》2020,27(30):37188-37198
Environmental Science and Pollution Research - Production of the greenhouse gas nitrous oxide (N2O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing... 相似文献
25.
Lai Xiaodong Liu Zhiming Luo Sumei 《Environmental science and pollution research international》2020,27(30):37363-37376
Environmental Science and Pollution Research - In the context of global warming and environmental deterioration, the environment impact assessment is a crucial institutional guaranty to assure less... 相似文献
26.
The only joint effort area of provincial and municipal governments resides in Guangdong Province and Shenzhen City in China’s carbon emission trading system (ETS) pilots, which characterize the national carbon ETS plots. The present study on the operating experience from this area has important reference value for the national carbon ETS. Analysis and comparison of the key elements show many differences in coverage, total allowance, allowance allocation, and MRV mechanism between Guangdong and Shenzhen carbon ETS. The present study provides the following explanation: (1) the design characteristics of carbon ETS (e.g. coverage, total quotas, the allocation, and MRV mechanism) depend on the local geographical conditions and policy goals. The differences of economic structure in Guangdong Province and Shenzhen City result in different coverage, which then result in differences in other management elements. (2) The operating state of the carbon market is affected by overall design of carbon ETS: in the case of tighter total allowance, lower proportion of China Certified Emission Reductions, and harsher punishment, the carbon market is relatively active, which intends to produce carbon financial market. Based on deep analysis of operation characteristics of carbon ETS in Guangdong and Shenzhen, the present study suggests that (1) the allowance should be allocated freely at the beginning stage and then gradually transited to the voluntary paid auction; (2) the allowances assigned to companies shall be linked up with their energy-saving objectives; (3) the output fluctuations and economic influence on the allowance allocation should be properly handled to maintain the fairness and consistence of allowance allocation standards; (4) stable public expectation is one of the key elements to maintain the regular operation of carbon ETS; (5) constrained carbon emission behavior outside ETS can contribute to social justice; and (6) the improvement of professional skills of relevant personnel in the enterprise and independent third party can enhance carbon emissions data reliability. 相似文献
27.
Aziz Khan Daniel Kean Yuen Tan Muhammad Zahir Afridi Honghai Luo Shahbaz Atta Tung Mir Ajab Shah Fahad 《Environmental science and pollution research international》2017,24(17):14551-14566
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future. 相似文献
28.
采用室内模拟实验方法,研究环境因子(温度、pH、扰动强度、供气量)对底泥释放COD的影响。结果表明,水温升高能加速底泥中有机质的释放;上覆水在弱酸至中性条件下底泥释放有机质最低;扰动上覆水体会加快有机质的释放。 相似文献
29.
Jiao Qu Chunqiu Luo Xing Yuan 《Environmental science and pollution research international》2013,20(6):3688-3695
Hyperaccumulators contain tubular cellulose and heavy metals, which can be used as the sources of carbon and metals to synthesize nanomaterials. In this paper, carbon nanotubes (CNTs), Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites were synthesized using Brassica juncea L. plants, and the ultraviolet (UV)-light-driven photocatalytic degradations of bisphenol A (BPA) using them as photocatalysts were studied. It was found that the outer diameter of CNTs was around 50 nm and there were a few defects in the crystal lattice. The synthesized Cu0.05Zn0.95O nanocomposites had a diameter of around 40 nm. Cu0.05Zn0.95O nanocomposites have grown on the surface of the CNTs and the outer diameter of them was around 100 nm. The synthesized hybrid carbon nanotubes using B. juncea could enhance the efficiency of photocatalytic degradation on BPA. The complete equilibration time of adsorption/desorption of BPA onto the surface of CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites was within 30, 20, and 30 min, and approximately 14.9, 8.7, and 17.4 % BPA was adsorbed by them, respectively. The combination of UV light irradiation (90 min) with CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites could lead to 48.3, 75.7, and 92.6 % decomposition yields of BPA, respectively. These findings constitute a new insight for synthesizing nanocatalyst by reusing hyperaccumulators. 相似文献
30.
Rapid degradation of butachlor in wheat rhizosphere soil 总被引:16,自引:0,他引:16
The degradative characteristics of butachlor in non-rhizosphere, wheat rhizosphere, and inoculated rhizosphere soils were measured. The rate constants for the degradation of butachlor in non-rhizosphere, rhizosphere, and inoculated rhizosphere soils were measured to be 0.0385, 0.0902, 0.1091 at 1 mg/kg, 0.0348, 0.0629, 0.2355 at 10 mg/kg, and 0.0299, 0.0386, 0.0642 at 100 mg/kg, respectively. The corresponding half-lives for butachlor in the soils were calculated to be 18.0, 7.7, 6.3 days at 1 mg/kg, 19.9, 11.0, 2.9 days at 10 mg/kg, and 23.2, 18.0, 10.8 days at 100 mg/kg, respectively. The experimental results show that the degradation of butachlor can be enhanced greatly in wheat rhizosphere, and especially in the rhizosphere inoculated with the bacterial community designated HD which is capable of degrading butachlor. It could be concluded that rhizosphere soil inoculated with microorganisms-degrading target herbicides is a useful pathway to achieve rapid degradation of the herbicides in soil. 相似文献