首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   4篇
  国内免费   19篇
安全科学   17篇
废物处理   30篇
环保管理   37篇
综合类   49篇
基础理论   59篇
环境理论   1篇
污染及防治   141篇
评价与监测   21篇
社会与环境   11篇
灾害及防治   5篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2019年   6篇
  2018年   16篇
  2017年   14篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   40篇
  2012年   27篇
  2011年   29篇
  2010年   18篇
  2009年   20篇
  2008年   33篇
  2007年   32篇
  2006年   22篇
  2005年   20篇
  2004年   18篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有371条查询结果,搜索用时 78 毫秒
51.
This paper presents a design method by which the overflow risk related to a detention for managing nonpoint pollutant sources in urban areas can be evaluated. The overall overflow risk of a nonpoint pollutant sources control detention can be estimated by inherent overflow risk and operational overflow risk. For the purpose of calculating overflow risk, the 3-parameter mixed exponential distribution is applied to describe the probability distribution of rainfall event depth. As a rainfall-runoff calculation procedure required for deriving a rainfall capture curve, the U.S. Natural Resources Conservation Service runoff curve number method is applied to consider the nonlinearity of the rainfall-runoff relation. Finally, the detention overflow risk is assessed with respect to the detention design capacity and drainage time. The proposed overflow risk assessment is expected to provide a baseline to determine quantitative parameters in designing a nonpoint sources control detention.  相似文献   
52.
In this study, the authors investigated the influence of the valence state of Mn on the efficacy of selective catalytic reduction using a Mn-based catalyst. The nitrogen oxides (NOx) conversion rate of the catalyst was found to be dependent on the type of TiO2 support employed and on the temperature, as the catalyst showed an excellent conversion of > 80% at a space velocity of 60,000 hr(-1) when the temperature was above 200 degrees C. Brunauer-Emmett-Teller, X-ray diffraction, and X-ray photoelectron spectroscopy analyses confirmed that catalyst displaying the highest activity contained the Mn4+ species and that its valence state was highly dependent on the pH during the catalyst preparation.  相似文献   
53.
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C-O and C-O-C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C-C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C-O and C-O-C group was observed due to the collapse of the ether group. In SEM and Brunauer-Emmett-Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.  相似文献   
54.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
55.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
56.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   
57.
58.
There is growing interest in the development of more cost-effective and retrofit technologies for the upgrade and expansion of existing wastewater treatment plants with extreme space constraints. A free-floating sponge media (BioCube) process, using a 24L lab scale reactor, was operated to study the nitrification profiles and microbial community. The COD removal efficiencies were maintained, at an average of 95%, with the mixed liquor suspended solids (MLSS) inside the BioCube sponge media maintained at 12,688mg/L. The nitrification removal efficiencies were between 92% and 100%, with an average value of 99%. From the results of microelectrode measurements, the ammonium ion concentration was found to rapidly decrease from the surface of the BioCube sponge media to a depth of 2mm due to chemical reactions carried out by ammonia oxidizing bacteria (AOB) species. Multi-fluorescence in situ hybridization (FISH) has been used to investigate the spatial distributions of various microbial activities within reactors. Microbial communities were targeted using different oligonucleotide probes specific to AOB and nitrite oxidizing bacteria (NOB). There were a large number of AOB populations, but these were not uniformly distributed in the biofilm compared to the NOB populations.  相似文献   
59.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   
60.
Li D  Dong M  Shim WJ  Yim UH  Hong SH  Kannan N 《Chemosphere》2008,71(6):1162-1172
To understand the distribution characteristics of nonylphenolics and sterols, samples such as in creek water, sea surface water, waste water treatment plant (WWTP) effluent water, sediment and mussel were collected and analyzed. The principal analytes are nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), coprostanol (5beta) and cholestanol (5alpha). All these target pollutants showed 100% detection frequency in all of the samples analyzed. Total concentration of nonylphenolic compounds ranged from 334 to 3628ngl(-1) (average: 1331ngl(-1)) in creek water, from 15 to 36400ngl(-1) (average: 1013ngl(-1)) in sea surface water, from 131 to 2811ngg(-1) dry weight (average: 581ngg(-1) dry weight) in sediment and from 50.5 to 289ngg(-1) dry weight (average: 139ngg(-1) dry weight) in mussel. For water samples, levels of nonylphenolics determined in summer season were higher than those in spring season. Among them, nonylphenol and NP1EO was dominant in creek water and seawater, respectively. The highest concentration was recorded in sediment near a WWTP effluent outlet. And high levels of nonylphenolics and sterols were found in about 3km area surrounding WWTP effluent outlet. Coefficient of linear regression (R(2)) for NP in mussel and in sediment was 0.90. Similarly good correlation (R(2)=0.98) was obtained between concentration in water and in mussel indicating that a steady state has been reached in this bay. The calculated bio concentration factor (BCF=2990) for NP in Masan Bay agrees well with reported values in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号