首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   4篇
  国内免费   19篇
安全科学   17篇
废物处理   30篇
环保管理   37篇
综合类   49篇
基础理论   59篇
环境理论   1篇
污染及防治   141篇
评价与监测   21篇
社会与环境   11篇
灾害及防治   5篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2019年   6篇
  2018年   16篇
  2017年   14篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   40篇
  2012年   27篇
  2011年   29篇
  2010年   18篇
  2009年   20篇
  2008年   33篇
  2007年   32篇
  2006年   22篇
  2005年   20篇
  2004年   18篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1978年   1篇
  1976年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
61.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   
62.
Li D  Dong M  Shim WJ  Yim UH  Hong SH  Kannan N 《Chemosphere》2008,71(6):1162-1172
To understand the distribution characteristics of nonylphenolics and sterols, samples such as in creek water, sea surface water, waste water treatment plant (WWTP) effluent water, sediment and mussel were collected and analyzed. The principal analytes are nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), coprostanol (5beta) and cholestanol (5alpha). All these target pollutants showed 100% detection frequency in all of the samples analyzed. Total concentration of nonylphenolic compounds ranged from 334 to 3628ngl(-1) (average: 1331ngl(-1)) in creek water, from 15 to 36400ngl(-1) (average: 1013ngl(-1)) in sea surface water, from 131 to 2811ngg(-1) dry weight (average: 581ngg(-1) dry weight) in sediment and from 50.5 to 289ngg(-1) dry weight (average: 139ngg(-1) dry weight) in mussel. For water samples, levels of nonylphenolics determined in summer season were higher than those in spring season. Among them, nonylphenol and NP1EO was dominant in creek water and seawater, respectively. The highest concentration was recorded in sediment near a WWTP effluent outlet. And high levels of nonylphenolics and sterols were found in about 3km area surrounding WWTP effluent outlet. Coefficient of linear regression (R(2)) for NP in mussel and in sediment was 0.90. Similarly good correlation (R(2)=0.98) was obtained between concentration in water and in mussel indicating that a steady state has been reached in this bay. The calculated bio concentration factor (BCF=2990) for NP in Masan Bay agrees well with reported values in the literature.  相似文献   
63.
An electrochemical COD (chemical oxygen demand) sensor using an electrode-surface grinding unit was investigated. The electrolyzing (oxidizing) action of copper on an organic species was used as the basis of the COD measuring sensor. Using a simple three-electrode cell and a surface grinding unit, the organic species is activated by the catalytic action of copper and oxidized at a working electrode, poised at a positive potential. When synthetic wastewater was fed into the system, the measured Coulombic yields were found to be dependent on the COD of the synthetic wastewater. A linear correlation between the Coulombic yields and the COD of the synthetic wastewater was established (10-1000 mg L(-1)) when the electrode-surface grinding procedure was activated briefly at 8 h intervals. When various kinds of wastewater samples obtained from various sewage treatment plants were measured, linear correlations (r(2)> or = 0.92) between the measured EOD (electrochemical oxygen demand) value and COD of the samples were observed. At a practical wastewater treatment plant, the measurement system was successfully operated with high accuracy and good stability over 3 months. These experimental results show that the application of the measurement system would be a rapid and practical method for the determination of COD in water industries.  相似文献   
64.
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.  相似文献   
65.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   
66.
The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.  相似文献   
67.
To select the best available packing material for malodorous organic gases such as toluene and benzene, biofilter performance was compared in biofilters employed different packing materials including porous ceramic (celite), Jeju scoria (lava), a mixture of granular activated carbon (GAC) and celite (GAC/celite), and cubic polyurethane foam (PU). A toluene-degrading bacterium, Stenotrophomonas maltophilia T3-c, was used as the inoculum. The maximum elimination capacities in the celite, lava, and GAC/celite biofilters were 100, 130, and 110 gm(-3) hr(-1), respectively. The elimination capacity for the PU biofilter was approximately 350 g m(-3) hr(-1) at an inlet loading of approximately 430 g m(-3) hr(-1), which was 2 to 3.5 times higher than for the other biofilters. The pressure drop gradually increased in the GAC/ celite, celite and lava biofilters after 23 day due to bacterial over-growth, and the toluene removal efficiency remarkably decreased with increasing pressure drop. Backwashing method was not effective for the control of biomass in these biofilters. In the PU biofilter however, backwashing allowed maintenance of a pressure drop of 1 to 3 mm H2O m(-1) and a removal efficiency of > 80%, indicating that the PU was the best packing material for toluene removal among the packing materials tested.  相似文献   
68.
Journal of Material Cycles and Waste Management - Municipal solid waste (MSW) landfills are the third largest source of global methane emissions as biogas (11%). In developing countries, MSW...  相似文献   
69.
Objectives The aim of this study was to evaluate the role of nasal bone assessment in first-trimester screening for Down syndrome (DS) in the Korean population. Methods From July 2004 to March 2006, we prospectively evaluated the fetal nasal bones at 11–14 weeks' gestation in the Korean population. Results A successful evaluation was possible in 6490 of 6787 fetuses (95.6%). Absent, hypoechoic, and short nasal bones were seen in 4 (26.7%), 4 (26.7%), and 1 (6.7%) of 15 fetuses with DS, respectively, whereas in 5 (0.1%), 11 (0.2%), and 246 (3.8%) of 6456 normal fetuses. The incidence of absent and hypoechoic nasal bone showed significant differences between normal fetuses and fetuses with DS (P < 0.0005, both). Screening for DS using an absent or hypoechoic nasal bone resulted in a sensitivity of 53.3%, a specificity of 99.8%, a positive likelihood ratio of 215.2, and a negative likelihood ratio of 0.5. Conclusion Our study showed that nasal bone abnormality at 11–14 weeks of gestation had a high association with DS in the Korean population. This suggests that nasal bone assessment can be used to supplement the current first-trimester screening for DS in the Korean population. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
70.
Stenotrophomonas maltophilia T3-c, isolated from a biofilter for the removal of benzene, toluene, ethylbenzene, and xylene (BTEX), could grow in a mineral salt medium containing toluene, benzene, or ethylbenzene as the sole source of carbon. The effect of environmental factors such as initial toluene mass, medium pH, and temperature on the degradation rate of toluene was investigated. The cosubstrate interactions in the BTEX mixture by the isolate were also studied. Within the range of initial toluene mass (from 23 to 70 pmol), an increased substrate concentration increased the specific degradation of toluene by S. maltophilia T3-c. The toluene degradation activity of S. maltophilia T3-c could be maintained at a broad pH range from 5 to 8. The rates at 20 and 40 degrees C were 43 and 83%, respectively, of the rate at 30 degrees C. The specific degradation rates of toluene, benzene, and ethylbenzene by strain T3-c were 2.38, 4.25, and 2.06 micromol/g-DCW/hr. While xylene could not be utilized as a growth substrate by S. maltophilia T3-c, the presence of toluene resulted in the cometabolic degradation of xylene. The specific degradation rate of toluene was increased by the presence of benzene, ethylbenzene, or xylene in binary mixtures. The presence of toluene or xylene in binary mixtures with benzene increased the specific degradation rate of benzene. The presence of ethylbenzene in binary mixtures with benzene inhibited benzene degradation. The presence of more than three kinds of substrates inhibited the specific degradation rate of benzene. All BTEX mixtures, except tri-mixtures of benzene, ethylbenzene, and xylene or mixtures of all four substrates, had little effect on the degradation of ethylbenzene by S. maltophilia T3-c. The utilization preference of the substrates by S. maltophilia T3-c was as follows: ethylbenzene was degraded fastest, followed by toluene and benzene. However, the specific degradation rates of substrates, in order, were benzene, toluene, and ethylbenzene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号