Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree–mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics. 相似文献
Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha?1 year?1. Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future. 相似文献
Large inputs of phosphorus (P) in chemical fertilizers and feed supplements since 1978 have improved soil P status in arable land in China, but have also created challenges by increasing P concentrations in manure and exacerbating water quality degradation. Arable land in China can be divided into five management zones based on soil P chemistry, with 15–92 % of arable land having lower P status than the agronomic optimum and 0.3–7.2 % having severe risks of P leaching losses. A scenario analysis of soil P budget and agronomic P demand during 2011–2030 highlighted the great pressure China faces in sustainable P management and the need for drastic changes in current practices. This includes new policies to reduce P supplementation of feed and improved P use efficiency by livestock and programs to expand the adoption of appropriate fertilization, soil conservation, and drainage management practices to minimize P losses. 相似文献
Ecosystem-based management (EBM) has become a key instrument of contemporary environmental policy and practice. Given the increasingly important role of EBM, there is an urgent need for improved analytical approaches to assess if and to what extent EBM has been accomplished in any given case. Drawing on the vast literature on EBM, we identify five key ecosystem aspects for assessment. By linking these aspects to four phases of management, we develop an interdisciplinary, analytical framework that enables a high-resolution and systematic assessment of the degree of specificity and integration of ecosystem aspects in an EBM. We then apply the framework to evaluate five coastal EBM initiatives in Sweden, four on the Baltic coast and one on the west coast. Our results demonstrate our framework’s usefulness for in-depth and continuous assessments of processes aiming for EBM, and also provide an empirical basis for inferences about the key challenges for successful EBM. 相似文献
Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea. 相似文献
Information age technology has the potential to change the game for conservation by continuously monitoring the pulse of the natural world. Whether or not it will depends on the ability of the conservation sector to build a community of practice, come together to define key technology challenges and work with a wide variety of partners to create, implement, and sustain solutions. I describe why these steps are necessary, outline the latest developments in the field and offer actionable ways forward for conservation agencies, universities, funding bodies, professional societies, and technology corporations to come together to realize the revolution that computational technologies can bring for biodiversity conservation. 相似文献
The availability of affordable ‘recreational’ camera traps has dramatically increased over the last decade. We present survey results which show that many conservation practitioners use cheaper ‘recreational’ units for research rather than more expensive ‘professional’ equipment. We present our perspective of using two popular models of ‘recreational’ camera trap for ecological field-based studies. The models used (for >2 years) presented us with a range of practical problems at all stages of their use including deployment, operation, and data management, which collectively crippled data collection and limited opportunities for quantification of key issues arising. Our experiences demonstrate that prospective users need to have a sufficient understanding of the limitations camera trap technology poses, dimensions we communicate here. While the merits of different camera traps will be study specific, the performance of more expensive ‘professional’ models may prove more cost-effective in the long-term when using camera traps for research. 相似文献
In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science–stakeholder communication. By this, we hope to stimulate a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models. 相似文献
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.