首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32893篇
  免费   347篇
  国内免费   245篇
安全科学   868篇
废物处理   1206篇
环保管理   4153篇
综合类   6267篇
基础理论   9102篇
环境理论   26篇
污染及防治   8375篇
评价与监测   1934篇
社会与环境   1348篇
灾害及防治   206篇
  2022年   227篇
  2021年   213篇
  2019年   243篇
  2018年   441篇
  2017年   426篇
  2016年   623篇
  2015年   537篇
  2014年   758篇
  2013年   2291篇
  2012年   943篇
  2011年   1317篇
  2010年   1122篇
  2009年   1131篇
  2008年   1355篇
  2007年   1453篇
  2006年   1276篇
  2005年   1085篇
  2004年   1074篇
  2003年   1034篇
  2002年   1000篇
  2001年   1293篇
  2000年   915篇
  1999年   609篇
  1998年   461篇
  1997年   476篇
  1996年   466篇
  1995年   518篇
  1994年   478篇
  1993年   421篇
  1992年   439篇
  1991年   404篇
  1990年   407篇
  1989年   438篇
  1988年   368篇
  1987年   316篇
  1986年   295篇
  1985年   330篇
  1984年   302篇
  1983年   332篇
  1982年   338篇
  1981年   287篇
  1980年   266篇
  1979年   298篇
  1978年   251篇
  1977年   219篇
  1976年   221篇
  1975年   209篇
  1974年   185篇
  1973年   197篇
  1972年   216篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
901.
The air quality management (AQM) framework in the UK is a risk management approach using effects-based objectives for air pollutants to determine the need for action. The Environment Act 1995 required a National Air Quality Strategy to be published, setting out health-based standards and objectives for eight pollutants, of which seven are to managed at a local scale. Because of the variety of sources of air pollution, if the AQM process is to succeed in the long term, solutions to identified problems will be required from transport, land use and economic planning sectors of local government in liaison with various other agencies, regulators and outside bodies. As such the task is inherently multi-disciplinary and an integrated, collaborative approach will be necessary. Although this observation is now fairly well documented, there is still little guidance relating to how, in relation to air quality management, integration can actually be accomplished. This paper presents some observations from case studies undertaken as part of a longer-term research study and in particular focuses on the identified problems of involving non-air-quality professionals in a highly technical scientific process. Various approaches to the collaborative aspects of air quality management will be presented. These case studies represent local authorities of different sizes in different political and organisational situations facing a range of air quality challenges. The creation of project teams or task forces is judged particularly useful for local air quality management. Methods that could be applied more widely include appointing individuals as integrators, and rotation of key personnel.  相似文献   
902.
903.
The legacy of mining activities has typically been land ‘returned to wildlife’, or, at some sites, degraded to such an extent that it is unsuitable for any alternate use. Progress towards sustainability is made when value is added in terms of the ecological, social and economic well‐being of the community. In keeping with the principles of sustainable development, the innovative use of flooded open pits and tailings impoundments as commercial, recreational or ornamental fish farms should be considered in some locations, as it could make a significant contribution to the social equity, economic vitality and environmental integrity of mining communities. This article highlights the growing significance of aquaculture and explores the benefits and barriers to transforming flooded pits and impoundments into aquaculture operations. Among other benefits, aquaculture may provide a much‐needed source of revenue, employment and, in some cases, food to communities impacted by mine closure. Further, aquaculture in a controlled closed environment may be more acceptable to critics of fish farming who are concerned about fish escapes and viral transmissions to wild populations. Despite the potential benefits, aquaculture in flooded pits and impoundments is not without its complications — it requires a site‐specific design approach that must consider issues ranging from metals uptake by fish, to the long‐term viability of the aquatic system as fish habitat, to the overall contribution of aquaculture to sustainability.  相似文献   
904.
Brazil produces approximately 242,000 t of waste per day, 76% of it being dumped outdoors and only 0.9% recycled, including composting, which is an alternative still little known in Brazil. In search of a better destination for residues produced by domestic activities, composting stands as a feasible alternative. Organic compost from waste may be used for various purposes, among which are soil recovery, commercial production, pastures, lawns and reforestry and agriculture. However, the quality of the compost determines the growth and the development of plants. The effect of compost made from urban waste on corn plant (Zea mays L.) growth was investigated. Two types of compost were used: the selected compost (SC), produced from organic waste selectively collected; and the non-selected compost (NSC), taken from a 15-year-old cell from the Canabrava land-fill, located in Salvador, Bahia, Brazil (altitude 51 m, 12°22′–13°08′S, 38°08′–38°47′W). Corn was seeded in polyethylene pots, with soil-compost mixing substrate in the proportion of 0, 15, 30, 45 and 60 t ha−1 equivalent doses. Chemical analyses of the compost and growth properties of the plant like chlorophyll content; height and stem diameter; aerial and radicular dry biomasses, were used to evaluate compost quality. Plants cultivated with SC presented a superior gain, being of 52.5% in stem diameter, 71.1 and 81.2% in root and stem biomasses, respectively. Chlorophyl content alterations were observed in plants from treatments using 30 t compost ha−1 dose onwards. Conventional and multivariate statistical methods were used to evaluate these results. The beneficial action of organic compost in plant growth was confirmed with this research.  相似文献   
905.
The concept of ‘environmental space’ has been put forward as a means for providing specific meaning to sustainability. The concept combines the idea of the existence of environmental limits with a strong principle of environmental justice. It has been used as a basis for the development of sustainable action plans for many European countries, and has attracted political interest. However, thus far, the concept has found limited application by governments. The paper identifies and discusses several issues that need to be addressed for the environmental space approach to be implemented. Three main options for the institutionalization of the approach are discussed: within the legal‐constitutional framework (as rights and obligations), within the economic system (as environmental property rights), and through green planning (as specific objectives and targets contained in national environmental plans or strategies). The paper discusses the ability of the three options to deal with the issues identified, assessing their relative advantages and disadvantages, and to what extent these options are complementary. Finally, conclusions are drawn about the viability of the concept of ‘environmental space’.  相似文献   
906.
ABSTRACT: A method is demonstrated for the development of nutrient concentration criteria and large scale assessment of trophic state in environmentally heterogeneous landscapes. The method uses the River Environment Classification (REC) as a spatial framework to partition rivers according to differences in processes that control the accrual and loss of algae biomass. The method is then applied to gravel bed rivers with natural flow regimes that drain hilly watersheds in New Zealand's South Island. An existing model is used to characterize trophic state (in terms of chlorophyll a as a measure of maximum biomass) using nutrient concentration, which controls the rate of biomass accrual, and flood frequency, which controls biomass loss. Variation in flood frequency was partitioned into three classes, and flow data measured at 68 sites was used to show that the classes differ with respect to flood frequency. Variation in nutrient concentration was partitioned at smaller spatial scales by subdivision of higher level classes into seven classes. The median of flood frequency in each of the three higher level classes was used as a control variable in the model to provide spatially explicit nutrient concentration criteria by setting maximum chlorophyll a to reflect a desired trophic state. The median of mean monthly soluble reactive phosphorus and soluble inorganic nitrogen measured at 68 water quality monitoring sites were then used to characterize the trophic state of each of the seven lower level classes. The method models biomass and therefore allows variation in this response variable to provide options for trophic state and the associated nutrient concentrations to achieve these. Thus it is less deterministic than using reference site water quality. The choice from among these options is a sociopolitical decision, which reflects the management objectives rather than purely technical considerations.  相似文献   
907.
ABSTRACT: This paper presents a modeling approach based on a geographic information system (GIS) to estimate the variability of on‐ground nitrogen loading and the corresponding nitrate leaching to ground water. The methodology integrates all point and nonpoint sources of nitrogen, the national land cover database, soil nitrogen transformations, and the uncertainty of key soil and land use‐related parameters to predict the nitrate mass leaching to ground water. The analysis considered 21 different land use classes with information derived from nitrogen sources such as fertilizer and dairy manure applications, dairy lagoons, septic systems, and dry and wet depositions. Simulations were performed at a temporal resolution of one month to capture seasonal trends. The model was applied to a large aquifer of 376 square miles in Washington State that serves more than 100,000 residents with drinking water. The results showed that dairy manure is the main source of nitrogen in the area followed by fertilizers. It was also seen that nitrate leaching is controlled by the recharge rate, and there can be a substantial buildup of soil nitrogen over long periods of time. Uncertainty analysis showed that denitrification rate is the most influential parameter on nitrate leaching. The results showed that combining management alternatives is a successful strategy, especially with the use of nitrification inhibitors. Also, change in the land use pattern has a noticeable impact on nitrate leaching.  相似文献   
908.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   
909.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   
910.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号