全文获取类型
收费全文 | 44574篇 |
免费 | 402篇 |
国内免费 | 194篇 |
专业分类
安全科学 | 1240篇 |
废物处理 | 1709篇 |
环保管理 | 6132篇 |
综合类 | 7522篇 |
基础理论 | 12623篇 |
环境理论 | 30篇 |
污染及防治 | 11126篇 |
评价与监测 | 2664篇 |
社会与环境 | 1818篇 |
灾害及防治 | 306篇 |
出版年
2021年 | 330篇 |
2020年 | 282篇 |
2019年 | 373篇 |
2018年 | 563篇 |
2017年 | 571篇 |
2016年 | 870篇 |
2015年 | 724篇 |
2014年 | 1019篇 |
2013年 | 3293篇 |
2012年 | 1261篇 |
2011年 | 1831篇 |
2010年 | 1494篇 |
2009年 | 1503篇 |
2008年 | 1828篇 |
2007年 | 1918篇 |
2006年 | 1698篇 |
2005年 | 1462篇 |
2004年 | 1411篇 |
2003年 | 1382篇 |
2002年 | 1343篇 |
2001年 | 1717篇 |
2000年 | 1239篇 |
1999年 | 779篇 |
1998年 | 601篇 |
1997年 | 626篇 |
1996年 | 641篇 |
1995年 | 704篇 |
1994年 | 653篇 |
1993年 | 596篇 |
1992年 | 604篇 |
1991年 | 561篇 |
1990年 | 583篇 |
1989年 | 594篇 |
1988年 | 507篇 |
1987年 | 459篇 |
1986年 | 428篇 |
1985年 | 439篇 |
1984年 | 477篇 |
1983年 | 479篇 |
1982年 | 513篇 |
1981年 | 440篇 |
1980年 | 377篇 |
1979年 | 415篇 |
1978年 | 360篇 |
1977年 | 302篇 |
1976年 | 296篇 |
1975年 | 285篇 |
1974年 | 283篇 |
1973年 | 291篇 |
1972年 | 298篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
481.
482.
In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens. 相似文献
483.
484.
Xu S Hao X Stanford K McAllister TA Larney FJ Wang J 《Journal of environmental quality》2007,36(6):1914-1919
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer. 相似文献
485.
Bradford P. Wilcox Clayton L. Hanson J. Ross Wight Wilbert H. Blackburn 《Journal of the American Water Resources Association》1989,25(3):653-666
ABSTRACT: An excellent hydrologic record on sagebrush range-land has been developed at the Reynolds Creek Experimental Watershed in southwestern Idaho. The objectives of this paper were two-fold: (1) to analyze and describe the hydrologic record (8–18 years) from four sagebrush watersheds (1–83 ha); and (2) to evaluate the hydrology component of SPUR, a comprehensive rangeland model. The watersheds represent a gradient in elevation (1180–1658 m) and precipitation (240–350 mm/yr). Runoff was a small fraction (> 2 percent) of the total water budget for all of the watersheds. It occurred very infrequently at the three lower elevation watersheds: Summit, Flats, and Nancy Gulch. At Lower Sheep, the highest elevation watershed, runoff occurred most years for a period of 1 to 17 weeks in the winter. Frozen soil combined with rainfall or snowmelt was associated with most of the runoff from Flats and Nancy Gulch. At Summit summertime thunderstorms produced all of the runoff. The average annual sediment yield from all of the watersheds was low (17–950 kg/ha). It was highest from Summit, which had well developed alluvial channels and very steep slopes. SPUR was able to simulate runoff with reasonable accuracy only at Summit, where frozen soils were not a factor. There was poor correlation between predicted and actual annual 8ediment loss. The model tended to overpredict evapotranspiration early in the growing season and underpredict it in the late summer. 相似文献
486.
Eragrostis tef (Zucc.), Cenchrus ciliaris L., and Digitaria eriantha Steud. were grown in a soil (Psammentic Haplustalf) and spoil material from a coalmine both treated with a lime water treatment residue (WTR) at rates of 0, 50, 100, 200, and 400 g kg(-1). The yield of the grasses, from the sum of the three harvests, and concentrations of B, Ca, Cu, K, Fe, Mg, Mn, N, Na, P, and Zn in foliage from the second harvest were determined. The yield of grasses grown in the soil decreased exponentially as WTR application increased. The yields of C. ciliaris, D. eriantha, and E. tef (in the 400 g kg(-1) WTR treated soil) decreased by 74.4, 78.7, and 59.8%, respectively, when compared with the control treatments. In the spoil, the yield of E. tef and D. eriantha decreased by 13.6% and and D. eriantha by 23.9%, while an increase was observed for C. ciliaris (45.4%), at the highest WTR application rate. No relationship existed between yield of E. tef and WTR application rate when grown in the spoil, while a weak negative linear relationship (p < 0.05) was found for D. eriantha and a positive linear relationship existed for C. ciliaris. Magnesium concentrations of the grasses were positively correlated to WTR application rate. Grasses grown in the soil had higher Na concentrations, while those grown in the spoil typically had higher B, N, and Zn concentrations. The decreases in yield were attributed to nutrient deficiencies (notably Zn), induced by high WTR application rates that led to high substrate pH. Disposal of high rates of WTR on the mine materials was not recommended. 相似文献
487.
Dougherty WJ Nicholls PJ Milham PJ Havilah EJ Lawrie RA 《Journal of environmental quality》2008,37(2):417-428
Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer. 相似文献
488.
Peter J. Tango Richard A. Batiuk 《Journal of the American Water Resources Association》2013,49(5):1007-1024
Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load. 相似文献
489.
The possible response of the carbon (C) balance of China's forests to an increase in atmospheric CO(2) concentration and climate change was investigated through a series of simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model, which explicitly represents the effects of climate, CO(2) concentration, and nitrogen deposition on future C sequestration by forests. Two climate change scenarios (CGCM2-A2 and -B2) were used to drive the model. Simulations showed that China's forests were a C sink in the 1990 s, averaging 189 Tg C yr(-1) (about 13% of the global total). This sink peaks around 2020 and then gradually declines to 33.5 Tg C yr(-1) during 2091-2100 without climate and CO(2) changes. Effects of pure climate change of CGCM2-A2 and -B2 without allowing CO(2) effects on C assimilation in plants might reduce the average net primary productivity (NPP) of China's forests by 29% and 18% during 2091-2100, respectively. Total soil C stocks might decrease by 16% and 11% during this period. China's forests might broadly act as C sources during 2091-2100, with values of about 50 g Cm(-2)yr(-1) under the moderate warming of CGCM2-B2 and 50-200 g Cm(-2)yr(-1) under the warmer scenario of CGCM2-A2. An increase in CO(2) might broadly increase future C sequestration of China's forests. However, this CO(2) fertilization effect might decline with time. The CO(2) fertilization effects on NPP by the end of this century are 349.6 and 241.7 Tg C yr(-1) under CGCM2-A2 and -B2 increase scenarios, respectively. These effects increase by 199.1 and 126.6 Tg C yr(-1) in the first 50 years, and thereafter, by 150.5 and 115.1 Tg C yr(-1) in the second 50 years under CGCM2-A2 and -B2 increase scenarios, respectively. Under a CO(2) increase without climate change, the majority of China's forests would be C sinks during 2091-2100, ranging from 0 to 100 g Cm(-2)yr(-1). The positive effect of CO(2) fertilization on NPP and net ecosystem productivity would be exceeded by the negative effect of climate change after 2050. Under the CGCM2-A2 climate scenario and with direct CO(2) effects, China's forests may be a small C source of 7.6 Tg C yr(-1) during 2091-2100. Most forests act as C sources of 0-40 g Cm(-2)yr(-1). Under the CGCM2-B2 climate scenario and with direct CO(2) effects, China's forests might be a small C sink of 10.5 Tg C yr(-1) during 2091-2100, with C sequestration of most forests ranging from 0 to 40 g Cm(-2)yr(-1). Stand age structure plays a more dominant role in determining future C sequestration than CO(2) and climate change. The prediction of future C sequestration of China's forests is very sensitive to the Q(10) value used to estimate maintenance respiration and to soil water availability and less sensitive to N deposition scenario. The results are not yet comprehensive, as no forest disturbance data were available or predicted after 2001. However, the results indicate a range of possible responses of the C balance of China's forests to various scenarios of increase in CO(2) and climate change. These results could be useful for assessing measures to mitigate climate change through reforestation. 相似文献
490.
Resuspension is a multiphase phenomenon where suspended solids encounter water layers differing in physico-chemical properties that affect the reactions of phosphorus (P). The role of resuspended sediment as a sink or source of dissolved P was determined in a laboratory study of P desorption-sorption equilibria. Gradual mixing was simulated using decreasing solid concentrations and varying environmental conditions (pH, redox, ionic strength). To describe the P exchange when the particles encounter dissimilar water layers, the extent of P sorption to or desorption from solids was expressed as a function of P concentration in the bath solutions. The equilibrium phosphorus concentration (EPC), at which there is no net P release from or retention to the particles, proved to be a suitable parameter for assessment of P load risk. Under oxic conditions at pH 7, commonly prevailing in lakes, the EPC values ranged from 11 to 27 microg P L(-1). The larger the water volume the suspended material was mixed with, the higher the P concentration, allowing desorption to occur. As for chemical factors affecting P mobilization, EPC followed the order: pH 7 < pH 7 anoxic < pH 9. A separate extraction experiment revealed that elevated pH enhanced P mobilization more as the concentration of solids decresed. The results demonstrate that high pH (a common characteristic in eutrophic lakes during summer), when linked with intensive resuspension, may markedly increase the internal P loading risk. As for the risk assessment, the quantification of the internal P loading would be improved by isotherm studies combined with field observations. 相似文献