首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43395篇
  免费   489篇
  国内免费   1405篇
安全科学   1224篇
废物处理   1806篇
环保管理   5707篇
综合类   7549篇
基础理论   12261篇
环境理论   22篇
污染及防治   11152篇
评价与监测   2641篇
社会与环境   2560篇
灾害及防治   367篇
  2022年   414篇
  2021年   357篇
  2020年   285篇
  2019年   347篇
  2018年   1055篇
  2017年   1028篇
  2016年   1192篇
  2015年   800篇
  2014年   1133篇
  2013年   2996篇
  2012年   1488篇
  2011年   2401篇
  2010年   1857篇
  2009年   1874篇
  2008年   2299篇
  2007年   2470篇
  2006年   1633篇
  2005年   1454篇
  2004年   1305篇
  2003年   1360篇
  2002年   1331篇
  2001年   1635篇
  2000年   1158篇
  1999年   736篇
  1998年   618篇
  1997年   592篇
  1996年   598篇
  1995年   644篇
  1994年   554篇
  1993年   497篇
  1992年   526篇
  1991年   469篇
  1990年   486篇
  1989年   510篇
  1988年   424篇
  1987年   362篇
  1986年   321篇
  1985年   366篇
  1984年   356篇
  1983年   395篇
  1982年   381篇
  1981年   323篇
  1980年   287篇
  1979年   321篇
  1978年   259篇
  1977年   230篇
  1976年   235篇
  1975年   228篇
  1973年   212篇
  1972年   226篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
941.
笔者针对前文所述试验中出现的破坏现象和试验数据 ,通过统计分析 ,研究了该类桥墩的力—位移关系、延性变形能力、抗力特性、滞回模式、耗能指标、损伤破坏模式 ,以及配筋率、箍筋布置、剪跨比等结构参量对该类参数的影响 ,进而为实际铁路桥梁的延性抗震设计提供了必要的试验依据  相似文献   
942.
山区高速公路挖方边坡的稳定性评价与安全防护技术   总被引:3,自引:3,他引:3  
山区高速公路挖方边坡的稳定性对道路交通安全具有重要影响 ,阐述了进行挖方边坡的稳定性评价和安全防护的必要性 ,提出了评价原则、工作程序、评价方法及系列安全防护技术。得出了关于山区高速公路挖方边坡的稳定性评价和安全防护的几点认识。  相似文献   
943.
 The effect of the soil solids concentration in batch tests on the measured values of the partition coefficient (K p) of organic pollutants in landfill liner-soil material was investigated. Since this study was based on the results of batch and column tests conducted independently, there were limitations to the conclusions derived. The organic compounds tested were benzene, methylene chloride, toluene, trichloroethylene, and p-xylene. The results of this study showed that as soil solids concentrations increased, the measured K p values of these organic compounds strongly decreased. The observed values of K p stabilized when the soil solids concentration was above a certain value. Typical K p values obtained from batch tests conducted under high soil solids concentrations were close to those obtained from column tests. It was concluded that the K p values of organic compounds measured under low soil solids concentrations, i.e., less than 100 g/l, may not correctly simulate the field situation. Consequently, the values of K p obtained with low soil solids concentrations can result in an overestimation of the retardation factor of the landfill liner material. Received: March 14, 2002 / Accepted: August 25, 2002  相似文献   
944.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   
945.
 This paper deals with the present scenario of hazardous waste management practices in Thailand, and gives some insights into future prospects. Industrialization in Thailand has systematically increased the generation of hazardous waste. The total hazardous waste generated in 2001 was 1.65 million tons. It is estimated that over 300 million kg/year of hazardous waste is generated from nonindustrial, community sources (e.g., batteries, fluorescent lamps, cleansing chemicals, pesticides). No special facilities are available for handling these wastes. There are neither well-established systems for separation, storage, collection, and transportation, nor the effective enforcement of regulations related to hazardous wastes management generated from industrial or nonindustrial sectors. Therefore, because of a lack of treatment and disposal facilities, these wastes find their way into municipal wastewaters, public landfills, nearby dump sites, or waterways, raising serious environmental concern. Furthermore, Thailand does not have an integrated regulatory framework regarding the monitoring and management of hazardous materials and wastes. In addition to the absence of a national definition of hazardous wastes, limited funding has caused significant impediments to the effective management of hazardous waste. Thus, current waste management practices in Thailand present significant potential hazards to humans and the environment. The challenging issues of hazardous waste management in Thailand are not only related to a scarcity of financial resources (required for treatment and disposal facilities), but also to the fact that there has been no development of appropriate technology following the principles of waste minimization and sustainable development. A holistic approach to achieving effective hazardous waste management that integrates the efforts of all sectors, government, private, and community, is needed for the betterment of human health and the environment. Received: February 26, 2001 / Accepted: October 11, 2002  相似文献   
946.
At the district heating plant of Kalmar, Sweden an on-line unit for production of granulated wood ash for nutrient recycling on forest soils is being applied. Currently, the granules are dried by hot air from an oil-fired burner. The objective of this work was to investigate how drying by flue gas affects the hardening of granules, or impacts their chemical composition and properties. Ninety-six granule samples were treated by flue gas from natural gas combustion in a laboratory pilot scale flue gas generator. CO2, CO, O2, C3H8 and NO concentrations were varied during the experiment. Additionally, some samples were treated by flue gas from combustion of sawdust at the heating plant in Kalmar. Drying by flue gases did not affect the chemical composition of granules, but minor effects were seen in their mineralogy. The carbonate content was slightly higher in granules treated with flue gas from natural gas combustion compared to the granules dried by hot air only, when measured by wet chemical methods. Results from XRD analysis imply that the calcite content is higher and the portlandite and arcanite content slightly less in granules treated with flue gas from sawdust combustion compared to the granules dried by hot air only. The results from this investigation showed no negative effects on ash granule composition or physical structure by the use of a flue as a drying medium.  相似文献   
947.
The UK National Air Quality Strategy has required local authorities to review and assess air quality in their area of jurisdiction and determine locations in their areas where concentrations of specific air quality pollutants are predicted to exceed national air quality objectives in the future. Statutory air quality management areas (AQMAs) are designated where air quality is predicted to be above specified objective concentrations by specific target dates, and statutory air quality action plans will be necessary to improve the local air quality within these areas. Over 124 local authorities in England (including London), Wales and Scotland anticipate declaring AQMAs following the conclusion of the statutory air quality review and assessment process. However, other influences are being exerted on the local air quality management process and AQMA decision-making processes. Such influences include regional and sub- regional collaborative working between local authorities and government agencies and wider political decision-making processes. Some regions of Great Britain (encompassing England (including London), Scotland and Wales) anticipate many AQMA designations, whilst other regions are not anticipating any such designations despite apparently similar air quality circumstances. Evidence for regional or sub-regional variations in the locations of anticipated AQMAs are examined through an evaluation of the outcomes of the scientific review and assessment process undertaken by local authorities declaring AQMAs, and through a local authority survey to identify influences on decision-making processes at a level above that of the local authority. Regional variation is reported in the type of pollutant causing AQMAs to be declared, in the numbers of AQMAs in regions and in the spatial distribution of AQMAs across Great Britain.  相似文献   
948.
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   
949.
ABSTRACT: A grid based daily hydrologic model for a watershed with paddy fields was developed to predict the stream discharge. ASCII formatted elevation, soil, and land use data supported by the GRASS Geographic Information System are used to generate distributed results such as surface runoff and subsurface flow, soil water content, and evapotranspiration. The model uses a single flow path algorithm and simulates a water balance at each grid element. A linear reservoir assumption was used to predict subsurface runoff components. The model was applied to a 75.6 km2 watershed located in the middle of South Korea, and observed stream flow hydrographs from 1995 and 1996 were compared to model predictions. The stream flow predictions of 1995 and 1996 generally agreed with the observed flow, resulting in a Nash‐Sutcliffe efficiency R2 of 0.60 and 0.62, respectively. The hydraulic conductivity for percolating water through the saturated layer affected baseflow generation. The levee height of the paddy influenced the time and magnitude of the surface runoff, depending on irrigation management. The model will be used for making low flow management decisions by evaluating the role of each land use to stream flow, especially in case of paddy decrease by gradual urbanization of a watershed.  相似文献   
950.
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号