全文获取类型
收费全文 | 30656篇 |
免费 | 398篇 |
国内免费 | 625篇 |
专业分类
安全科学 | 915篇 |
废物处理 | 1129篇 |
环保管理 | 4114篇 |
综合类 | 5354篇 |
基础理论 | 8701篇 |
环境理论 | 22篇 |
污染及防治 | 8135篇 |
评价与监测 | 1791篇 |
社会与环境 | 1291篇 |
灾害及防治 | 227篇 |
出版年
2022年 | 266篇 |
2021年 | 254篇 |
2020年 | 209篇 |
2019年 | 250篇 |
2018年 | 431篇 |
2017年 | 444篇 |
2016年 | 616篇 |
2015年 | 573篇 |
2014年 | 780篇 |
2013年 | 2269篇 |
2012年 | 947篇 |
2011年 | 1352篇 |
2010年 | 1108篇 |
2009年 | 1096篇 |
2008年 | 1334篇 |
2007年 | 1384篇 |
2006年 | 1238篇 |
2005年 | 1037篇 |
2004年 | 1032篇 |
2003年 | 966篇 |
2002年 | 967篇 |
2001年 | 1267篇 |
2000年 | 891篇 |
1999年 | 575篇 |
1998年 | 447篇 |
1997年 | 457篇 |
1996年 | 459篇 |
1995年 | 498篇 |
1994年 | 450篇 |
1993年 | 412篇 |
1992年 | 421篇 |
1991年 | 377篇 |
1990年 | 381篇 |
1989年 | 413篇 |
1988年 | 347篇 |
1987年 | 300篇 |
1986年 | 277篇 |
1985年 | 307篇 |
1984年 | 286篇 |
1983年 | 322篇 |
1982年 | 322篇 |
1981年 | 271篇 |
1980年 | 244篇 |
1979年 | 269篇 |
1978年 | 229篇 |
1977年 | 195篇 |
1976年 | 200篇 |
1975年 | 192篇 |
1973年 | 173篇 |
1972年 | 198篇 |
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
191.
Russell M. Wise Graham P. von Maltitz Robert J. Scholes Chris Elphinstone Renee Koen 《Mitigation and Adaptation Strategies for Global Change》2009,14(7):579-604
Minimising the cost of repeatedly estimating C (C) stocks is crucial to the financial viability of projects that seek to sell C credits. Depending on the price of C, this may imply less or more sampling effort than would be applied for science objectives. In systems with heterogeneous C pools, such as savannas, this translates into a variable-effort sampling strategy that maximises the marginal additional C that can be claimed per incremental unit of effort expended. Analysis of a savanna in north-eastern South Africa indicates relatively modest returns per hectare due to the small C quantities and low sequestration rates. Under these conditions, areas in excess of 1,000 ha and infrequent sampling frequencies of 5–10 years are required to make such projects financially viable. For such projects the sample variance, number of samples, cost per sample and establishment costs have negligible impacts on financial viability. It was also found that the soil-C pool contributes up to three times the net returns of the aboveground C pool and provides a strong argument to monitor soil C for certification and market trading. The financial viability estimates, however, do not include the management or opportunity costs incurred in changing the land use. The economies of scale identified in this study combined with the massive area covered by savannas indicate that these additional costs can be covered. Further research is recommended to quantify these costs and interrogate the feasibility of large scale (in excess of 10,000 ha) C-sink projects in savanna systems. 相似文献
192.
193.
194.
195.
196.
197.
198.
199.
Cr(Ⅲ) adsorption by biochars generated from peanut, soybean, canola and rice straws is investigated with batch methods. Adsorption of Cr(Ⅲ) increased as pH rose from 2.5 to 5.0. Adsorption of Cr(Ⅲ) led to peak position shifts in the FFIR-PAS spectra of the biochars and made zeta potential values less negative, suggesting the formation of surface complexes between Cr^3+ and functional groups on the biochars. The adsorption capacity of Cr(Ⅲ) followed the order: peanut straw char 〉 soybean straw char 〉 canola straw char 〉 rice straw char, which was consistent with the content of acidic functional groups on the biochars. The increase in Cr^3+ hydrolysis as the pH rose was one of the main reasons for the increased adsorption of Cr(Ⅲ) by the biochars at higher pH values. Cr(llI) can be adsorbed by the biochars through electrostatic attraction between negative surfaces and Cr^3+, but the relative contribution of electrostatic adsorption was less than 5%. Therefore, Cr(Ⅲ) was mainly adsorbed by the biochars through specific adsorption. The Langumir and Freundlich equations fitted the adsorption isotherms well and can therefore be used to describe the adsorption behavior of Cr(Ⅲ) by the crop straw biochars. The crop straw biochars have great adsorption capacities for Cr(Ⅲ) under acidic conditions and can be used as adsorbents to remove Cr(Ⅲ) from acidic wastewaters. 相似文献
200.